Created
November 8, 2017 03:04
-
-
Save fazd/336533972480d5312dd99eb5b905fdc4 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import cv2 | |
from itertools import * | |
from os import listdir | |
from os.path import isfile, join | |
import time | |
from operator import itemgetter | |
def guardar_imagen(img,cont): | |
k='byw/imagen'+str(cont)+'.png' | |
cv2.imwrite(k,img) | |
def cargar_imagenes(): | |
mypath = 'test' | |
nombres = [] | |
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))] | |
images = np.empty(len(onlyfiles), dtype=object) | |
for n in range(0, len(onlyfiles)): | |
images[n] = cv2.imread(join(mypath, onlyfiles[n])) | |
k=onlyfiles[n].split('.') | |
nombres.append(k[0]) | |
print(len(images)) | |
return images,nombres | |
def clear_edges(img): | |
return cv2.medianBlur(img,5) | |
def imagen_to_black_and_white(img,cont): | |
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
minimo=min_colors(gray) | |
im_bw=change_color(gray,minimo) | |
guardar_imagen(im_bw,cont) | |
return clear_edges(im_bw) | |
def min_colors(img): | |
return img[img>-1].min() | |
def change_color(img,minimo): | |
filas, colum = img.shape | |
for i in range(filas): | |
for j in range(colum): | |
if (img[i, j]<minimo+25): | |
img[i, j]=0 | |
else: | |
img[i,j]=255 | |
return img | |
def dist (x,y): | |
x1,y1=x | |
x2,y2=y | |
return np.sqrt(pow((x1-x2), 2) + pow((y1-y2), 2)) | |
def media(dicc): | |
return np.mean(dicc) | |
def varianza(media,dicc): | |
return np.std(dicc) | |
def coeficiente_varianza(media,varianza): | |
return (varianza/media) | |
def crear_Diccionario(image,num): | |
filas, colum, channels=image.shape | |
diccionario = {} | |
img=imagen_to_black_and_white(image,num) | |
elemi1=0 | |
puntos=[] | |
for i in product(range(0,filas),range(elemi1,colum)): | |
if(img[i]==0): | |
puntos.append(i) | |
limite=len(puntos) | |
lista=[] | |
for i in range(0,limite,1): | |
for j in range(i+1,limite,1): | |
lista.append(dist(puntos[i],puntos[j])) | |
return lista | |
def principal(image,cont): | |
lista=crear_Diccionario(image,cont) | |
med=media(lista) | |
var=varianza(med,lista) | |
coef=coeficiente_varianza(med,var) | |
analizar(var,cont) | |
return (med,var,coef) | |
def analizar(coeficiente,name): | |
if(coeficiente >=6.5): | |
print('la célula',name,'esta en telofase') | |
initial = time.time() | |
imagenes,names=cargar_imagenes() | |
var= [] | |
med = [] | |
co=[] | |
cont=1 | |
for i in range(len(imagenes)): | |
x,y,z=principal(imagenes[i],names[i]) | |
cont=cont+1 | |
var.append((x,names[i])) | |
med.append((y,names[i])) | |
co.append((z,names[i])) | |
k= len(names) | |
var=sorted(var, key=itemgetter(0)) | |
med= sorted(med, key=itemgetter(0)) | |
co= sorted(co, key=itemgetter(0)) | |
print('ordenadas por varianza') | |
for i in range(k): | |
print(var[i]) | |
print('ordenadas por media') | |
for i in range(k): | |
print(med[i]) | |
print('ordenadas por coef') | |
for i in range(k): | |
print(co[i]) | |
End = time.time() | |
print('tiempo=',End-initial) | |
print('fin') | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment