-
-
Save fchollet/7eb39b44eb9e16e59632d25fb3119975 to your computer and use it in GitHub Desktop.
'''This script goes along the blog post | |
"Building powerful image classification models using very little data" | |
from blog.keras.io. | |
It uses data that can be downloaded at: | |
https://www.kaggle.com/c/dogs-vs-cats/data | |
In our setup, we: | |
- created a data/ folder | |
- created train/ and validation/ subfolders inside data/ | |
- created cats/ and dogs/ subfolders inside train/ and validation/ | |
- put the cat pictures index 0-999 in data/train/cats | |
- put the cat pictures index 1000-1400 in data/validation/cats | |
- put the dogs pictures index 12500-13499 in data/train/dogs | |
- put the dog pictures index 13500-13900 in data/validation/dogs | |
So that we have 1000 training examples for each class, and 400 validation examples for each class. | |
In summary, this is our directory structure: | |
``` | |
data/ | |
train/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
validation/ | |
dogs/ | |
dog001.jpg | |
dog002.jpg | |
... | |
cats/ | |
cat001.jpg | |
cat002.jpg | |
... | |
``` | |
''' | |
from keras import applications | |
from keras.preprocessing.image import ImageDataGenerator | |
from keras import optimizers | |
from keras.models import Sequential | |
from keras.layers import Dropout, Flatten, Dense | |
# path to the model weights files. | |
weights_path = '../keras/examples/vgg16_weights.h5' | |
top_model_weights_path = 'fc_model.h5' | |
# dimensions of our images. | |
img_width, img_height = 150, 150 | |
train_data_dir = 'cats_and_dogs_small/train' | |
validation_data_dir = 'cats_and_dogs_small/validation' | |
nb_train_samples = 2000 | |
nb_validation_samples = 800 | |
epochs = 50 | |
batch_size = 16 | |
# build the VGG16 network | |
model = applications.VGG16(weights='imagenet', include_top=False) | |
print('Model loaded.') | |
# build a classifier model to put on top of the convolutional model | |
top_model = Sequential() | |
top_model.add(Flatten(input_shape=model.output_shape[1:])) | |
top_model.add(Dense(256, activation='relu')) | |
top_model.add(Dropout(0.5)) | |
top_model.add(Dense(1, activation='sigmoid')) | |
# note that it is necessary to start with a fully-trained | |
# classifier, including the top classifier, | |
# in order to successfully do fine-tuning | |
top_model.load_weights(top_model_weights_path) | |
# add the model on top of the convolutional base | |
model.add(top_model) | |
# set the first 25 layers (up to the last conv block) | |
# to non-trainable (weights will not be updated) | |
for layer in model.layers[:25]: | |
layer.trainable = False | |
# compile the model with a SGD/momentum optimizer | |
# and a very slow learning rate. | |
model.compile(loss='binary_crossentropy', | |
optimizer=optimizers.SGD(lr=1e-4, momentum=0.9), | |
metrics=['accuracy']) | |
# prepare data augmentation configuration | |
train_datagen = ImageDataGenerator( | |
rescale=1. / 255, | |
shear_range=0.2, | |
zoom_range=0.2, | |
horizontal_flip=True) | |
test_datagen = ImageDataGenerator(rescale=1. / 255) | |
train_generator = train_datagen.flow_from_directory( | |
train_data_dir, | |
target_size=(img_height, img_width), | |
batch_size=batch_size, | |
class_mode='binary') | |
validation_generator = test_datagen.flow_from_directory( | |
validation_data_dir, | |
target_size=(img_height, img_width), | |
batch_size=batch_size, | |
class_mode='binary') | |
# fine-tune the model | |
model.fit_generator( | |
train_generator, | |
samples_per_epoch=nb_train_samples, | |
epochs=epochs, | |
validation_data=validation_generator, | |
nb_val_samples=nb_validation_samples) |
@lokoprof09 you are welcome
Hi, I get the following error when fine tuning with classifier_from_little_data_script_3.py . Any idea anyone please help.
Traceback (most recent call last):
File "classifier3.py", line 35, in
top_model.add(Dense(256, activation='relu'))
File "/home/zhang/ENTER/lib/python3.8/site-packages/tensorflow/python/training/tracking/base.py", line 456, in _method_wrapper
result = method(self, *args, **kwargs)
File "/home/zhang/ENTER/lib/python3.8/site-packages/tensorflow/python/keras/engine/sequential.py", line 213, in add
output_tensor = layer(self.outputs[0])
File "/home/zhang/ENTER/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py", line 897, in call
self._maybe_build(inputs)
File "/home/zhang/ENTER/lib/python3.8/site-packages/tensorflow/python/keras/engine/base_layer.py", line 2416, in _maybe_build
self.build(input_shapes) # pylint:disable=not-callable
File "/home/zhang/ENTER/lib/python3.8/site-packages/tensorflow/python/keras/layers/core.py", line 1154, in build
raise ValueError('The last dimension of the inputs to Dense
'
ValueError: The last dimension of the inputs to Dense
should be defined. Found None
.
@fchollet I would really appreciate it if you can help me,
I got the same problem, the following line causes this error:
flatten = Flatten(name='flatten')(vgg16_output)
I changed this line with using GlobalAveragePooling2D(), then it worked.
flatten = GlobalAveragePooling2D()(vgg16_output)
ValueError: The last dimension of the inputs to Dense should be defined. Found None.
Sorry, I got a error like that The shape of the input to "Flatten" is not fully defined (got (None, None, 512). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.
I cannot find the weight file to download, '../keras/examples/vgg16_weights.h5' Thanks
@KennethYCK Hi! I am unable to understand how to get the input shape for my first layer. Can you help?
Fine tuned models' Prediction code
This codes were checked by myself. They all worked fine.
This code is inspired by stack overflow answer. click here
@allanchua101 only you have to edit this directorys path according to your drive file paths.