Last active
August 13, 2019 15:23
-
-
Save fchollet/87e9a3e0539ce268222d1d597864c098 to your computer and use it in GitHub Desktop.
New stacked RNNs in Keras
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
import numpy as np | |
timesteps = 60 | |
input_dim = 64 | |
samples = 10000 | |
batch_size = 128 | |
output_dim = 64 | |
# Test data. | |
x_np = np.random.random((samples, timesteps, input_dim)) | |
y_np = np.random.random((samples, output_dim)) | |
print('Classic stacked LSTM: 35s/epoch on CPU') | |
inputs = keras.Input((timesteps, input_dim)) | |
x = keras.layers.LSTM(output_dim, return_sequences=True)(inputs) | |
x = keras.layers.LSTM(output_dim, return_sequences=True)(x) | |
x = keras.layers.LSTM(output_dim)(x) | |
classic_model = keras.models.Model(inputs, x) | |
classic_model.compile(optimizer='rmsprop', loss='mse') | |
classic_model.fit(x_np, y_np, batch_size=batch_size, epochs=4) | |
print('New stacked LSTM: 30s/epoch on CPU (15pct faster)') | |
cells = [ | |
keras.layers.LSTMCell(output_dim), | |
keras.layers.LSTMCell(output_dim), | |
keras.layers.LSTMCell(output_dim), | |
] | |
inputs = keras.Input((timesteps, input_dim)) | |
x = keras.layers.RNN(cells)(inputs) | |
new_model = keras.models.Model(inputs, x) | |
new_model.compile(optimizer='rmsprop', loss='mse') | |
new_model.fit(x_np, y_np, batch_size=batch_size, epochs=4) |
How would you add a Dense layer to your cells list? I am struggling :/
How do you use Bidirectional Wrapper along with this?
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@fchollet could you please clarify about
initial_state
? How it might affect model when I share state between stacked RNN cells?