Created
August 13, 2016 19:57
-
-
Save fchollet/b7507f373a3446097f26840330c1c378 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from keras.models import Sequential | |
from keras.layers import Dense | |
x, y = ... | |
x_val, y_val = ... | |
# 1-dimensional MSE linear regression in Keras | |
model = Sequential() | |
model.add(Dense(1, input_dim=x.shape[1])) | |
model.compile(optimizer='rmsprop', loss='mse') | |
model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) | |
# 2-class logistic regression in Keras | |
model = Sequential() | |
model.add(Dense(1, activation='sigmoid', input_dim=x.shape[1])) | |
model.compile(optimizer='rmsprop', loss='binary_crossentropy') | |
model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) | |
# logistic regression with L1 and L2 regularization | |
from keras.regularizers import l1l2 | |
reg = l1l2(l1=0.01, l2=0.01) | |
model = Sequential() | |
model.add(Dense(1, activation='sigmoid', W_regularizer=reg, input_dim=x.shape[1])) | |
model.compile(optimizer='rmsprop', loss='binary_crossentropy') | |
model.fit(x, y, nb_epoch=10, validation_data=(x_val, y_val)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment