Created
October 29, 2020 21:38
-
-
Save fclesio/35a855ef5bd1e6e5d988c3f51d4d6644 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import awswrangler as wr | |
import pandas as pd | |
df = pd.DataFrame({"id": [1, 2], "value": ["foo", "boo"]}) | |
# Armazenando os dados no Data Lake | |
wr.s3.to_parquet( | |
df=df, | |
path="s3://bucket/dataset/", | |
dataset=True, | |
database="my_db", | |
table="my_table" | |
) | |
# Pegando os dados diretamente do S3 | |
df = wr.s3.read_parquet("s3://bucket/dataset/", dataset=True) | |
# Peganndo os dados do Amazon Athena | |
df = wr.athena.read_sql_query("SELECT * FROM my_table", database="my_db") | |
# Usa a conexão do Redshift via SQLAlchemy vinda do Glue e pega as informações do Redshift Spectrum | |
engine = wr.catalog.get_engine("my-redshift-connection") | |
df = wr.db.read_sql_query("SELECT * FROM external_schema.my_table", con=engine) | |
# Pega a conexão do MySQL via SQLAlchemy do catálogo do Glue e carrega as informações no MySQL | |
engine = wr.catalog.get_engine("my-mysql-connection") | |
wr.db.to_sql(df, engine, schema="test", name="my_table") | |
# Pega a conexão do PostgreSQL via SQLAlchemy do catálogo do Glue e carrega as informações no PostgreSQL | |
engine = wr.catalog.get_engine("my-postgresql-connection") | |
wr.db.to_sql(df, engine, schema="test", name="my_table") | |
# Fonte: https://github.com/awslabs/aws-data-wrangler |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment