Created
April 15, 2020 05:04
-
-
Save fdabek1/b029d74311a0862732cdf863d7b30051 to your computer and use it in GitHub Desktop.
Generate Precision Recall Curve
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.metrics import precision_recall_curve, auc, average_precision_score, roc_auc_score | |
import matplotlib.pyplot as plt | |
from inspect import signature | |
def generate_curve(y_true, y_pred): | |
precision, recall, _ = precision_recall_curve(y_true, y_pred) | |
average_precision = average_precision_score(y_true, y_pred) | |
roc_auc = roc_auc_score(y_true, y_pred) | |
# In matplotlib < 1.5, plt.fill_between does not have a 'step' argument | |
step_kwargs = ({'step': 'post'} | |
if 'step' in signature(plt.fill_between).parameters | |
else {}) | |
plt.step(recall, precision, color='b', alpha=0.2, | |
where='post') | |
plt.fill_between(recall, precision, alpha=0.2, color='b', **step_kwargs) | |
plt.xlabel('Recall') | |
plt.ylabel('Precision') | |
plt.ylim([0.0, 1.05]) | |
plt.xlim([0.0, 1.0]) | |
plt.title('Precision-Recall Curve: AP={0:0.2f}; AUC={0:0.2f}'.format(average_precision, auc)) | |
plt.clf() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment