Created
November 22, 2017 23:18
-
-
Save fdavidcl/717337535629a16cd50bffa07fd62242 to your computer and use it in GitHub Desktop.
An experiment on autoencoding Wisconsin Breast Cancer Diagnosis dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
--- | |
title: "WDBC" | |
author: "David Charte" | |
date: "22 de noviembre de 2017" | |
output: | |
html_document: default | |
--- | |
```{r setup, include=FALSE, echo = F, results = "hide", message=FALSE} | |
knitr::opts_chunk$set(echo = FALSE) | |
library(foreign) | |
library(RWeka) | |
library(xgboost) | |
library(ruta) | |
library(rutavis) | |
library(e1071) | |
library(partykit) | |
library(randomForest) | |
library(caret) | |
library(webshot) | |
# wdbc <- read.arff("wdbc.arff") | |
wdbc <- read.csv("wdbc.csv") | |
cv <- function(data, predictions) { | |
set.seed(12345678) | |
folds <- createFolds(data[, 1], k = 10) | |
accuracy <- sapply(folds, function(test) { | |
pred <- predictions(data[-test, ], data[test, -1]) | |
sum(pred == data[test, 1]) / length(test) | |
}) | |
} | |
model <- function(method) { | |
list( | |
c45 = function(tra, tst) { | |
predict(J48(class ~ ., data = tra), tst) | |
}, | |
svm = function(tra, tst) { | |
predict(svm(class ~ ., data = tra), tst) | |
}, | |
rf = function(tra, tst) { | |
predict(randomForest(class ~ ., data = tra), tst) | |
}, | |
xg = function(tra, tst) { | |
mod <- xgboost(data = as.matrix(tra[, -1]), | |
label = as.numeric(tra[, 1]) - 1, | |
max_depth = 2, eta = 1, nthread = 4, | |
nrounds = 2, objective = "binary:logistic") | |
pred <- predict(mod, as.matrix(tst)) | |
pred <- as.numeric(pred > 0.5) | |
pred <- as.factor(pred) | |
levels(pred) <- levels(tra[, 1]) | |
pred | |
} | |
)[[method]] | |
} | |
autoencode <- function(dat, cl = 1, hidden, seed = 8912345, ...) { | |
set.seed(seed) | |
mxnet::mx.set.seed(seed) | |
ae <- ruta.makeLearner("autoencoder", | |
hidden = c(ncol(dat) - 1, hidden, ncol(dat) - 1), | |
activation = "leaky") | |
tk <- ruta.makeTask(data = dat, cl = cl) | |
aemd <- ruta::train( | |
ae, | |
tk, | |
epochs = 200, | |
optimizer = "adam", | |
#momentum = 0.002, | |
learning.rate = 0.02, | |
initializer.scale = 1, | |
wd = 0.01, | |
... | |
) | |
encoded <- as.data.frame(ruta.deepFeatures(aemd, tk)) | |
encoded <- cbind(dat[, 1], encoded) | |
names(encoded) <- c("class", paste0("v", as.character(1:(ncol(encoded)-1)))) | |
list(aemd, encoded, tk) | |
} | |
run <- function(methods) { | |
res <- "" | |
encoded5 <- autoencode(wdbc, hidden = 5) | |
encoded3 <- autoencode(wdbc, hidden = 3) | |
for (method in methods) { | |
res <- paste0(res, "Method: ", method, "\n==================\n") | |
ac <- cv(wdbc, model(method)) | |
res <- paste0(res, "Model trained with original dataset:\n") | |
res <- paste0(res, " Mean accuracy: ", mean(ac), ", std dev:", sd(ac)) | |
ac <- cv(encoded5[[2]], model(method)) | |
res <- paste0(res, "\nModel trained with 5 autoencoded variables:\n") | |
res <- paste0(res, " Mean accuracy: ", mean(ac), ", std dev:", sd(ac)) | |
ac <- cv(encoded3[[2]], model(method)) | |
res <- paste0(res, "\nModel trained with 3 autoencoded variables:\n") | |
res <- paste0(res, " Mean accuracy: ", mean(ac), ", std dev:", sd(ac)) | |
res <- paste0(res, "\n\n") | |
} | |
list(res, encoded5[[1]], encoded3[[1]], encoded5[[3]]) | |
} | |
``` | |
### Accuracy en test de los algoritmos | |
```{r, echo = F, results = "hide", message=FALSE, warning = F} | |
res <- run(c("c45", "svm", "rf", "xg")) | |
``` | |
```{r, echo = F} | |
cat("WDBC is a binary dataset consisting of", nrow(wdbc), "observations of", ncol(wdbc), "features.") | |
``` | |
```{r, echo = F} | |
cat(res[[1]]) | |
``` | |
```{r, echo = F, warning = F, message = F} | |
plot(res[[3]], res[[4]], size = 1, sizes = c(1, 2)) | |
``` | |
## Árboles de decisión | |
```{r, echo = F, results="hide", message=F, warning=F} | |
set.seed(12345678) | |
encoded5 <- autoencode(wdbc, hidden = 5)[[2]] | |
encoded3 <- autoencode(wdbc, hidden = 3)[[2]] | |
trees <- lapply(list(wdbc, encoded5, encoded3), function(df) { | |
print(dim(df)) | |
folds <- createFolds(df[, 1], k = 10) | |
J48(class ~ ., data = df[-folds[[1]],]) | |
}) | |
``` | |
### Datos originales | |
```{r} | |
print(trees[[1]]) | |
``` | |
### Datos del autoencoder de 5 variables | |
```{r} | |
print(trees[[2]]) | |
``` | |
### Datos del autoencoder de 3 variables | |
```{r} | |
print(trees[[3]]) | |
``` |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment