Created
November 26, 2018 17:44
-
-
Save fdavidcl/f0b42e586abae11f778649e46e037bd5 to your computer and use it in GitHub Desktop.
Convolutional autoencoder with Ruta/Simple autoencoder comparison
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
library(ruta) | |
library(purrr) | |
library(keras) | |
plot_square <- function(square, ...) { | |
image(t(square)[,28:1], xaxt = "n", yaxt = "n", col = gray((255:0)/255), ...) | |
} | |
plot_sample <- function(digits_test, digits_dec, sample) { | |
sample_size <- length(sample) | |
layout( | |
matrix(c(1:(2 * sample_size)), byrow = F, nrow = 2) | |
) | |
for (i in sample) { | |
par(mar = c(0,0,0,0) + 1) | |
plot_square(digits_test[i,,,1 ]) | |
plot_square(digits_dec[i,,,1 ]) | |
} | |
} | |
mnist <- dataset_mnist() | |
x_train <- mnist$train$x / 255.0 | |
x_test <- mnist$test$x / 255.0 | |
net <- input() + | |
layer_keras("reshape", target_shape = c(dim(x_train)[-1], 1)) + | |
layer_keras("conv_2d", filters = 16, kernel_size = 3, activation = "relu", padding = "same") + | |
layer_keras("max_pooling_2d") + | |
layer_keras("conv_2d", filters = 8, kernel_size = 3, activation = "relu", padding = "same") + | |
layer_keras("max_pooling_2d", name = "encoding") + | |
layer_keras("conv_2d", filters = 8, kernel_size = 3, activation = "relu", padding = "same") + | |
layer_keras("upsampling_2d") + | |
layer_keras("conv_2d", filters = 16, kernel_size = 3, activation = "relu", padding = "same") + | |
layer_keras("upsampling_2d") + | |
layer_keras("conv_2d", filters = 1, kernel_size = 3, activation = "sigmoid", padding = "same") + | |
layer_keras("reshape", target_shape = dim(x_train)[-1]) | |
ae <- autoencoder(net, loss = "binary_crossentropy") | |
model <- ae %>% train(x_train, validation_data = x_test, epochs = 4) | |
evaluate_mean_squared_error(model, x_test) | |
enc <- model %>% encode(x_test) | |
decode <- model %>% reconstruct(x_test) | |
plot_sample(x_test, decode, 1:10) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
xtrain <- quakes[1:750,] %>% as.matrix() | |
xtest <- quakes[751:1000,] %>% as.matrix() | |
encoding_dim <- 2 | |
hidden_dim <- 6 | |
# ============== Ruta ============== | |
library(ruta) | |
library(purrr) | |
features <- autoencoder(c(hidden_dim, encoding_dim)) %>% | |
train(xtrain) %>% | |
encode(xtest) | |
# ============== Keras ============== | |
library(keras) | |
input_l <- layer_input(shape = 5) | |
encoded <- layer_dense(input_l, units = hidden_dim) | |
encoded <- layer_dense(encoded, units = encoding_dim) | |
decoded <- layer_dense(encoded, units = hidden_dim) | |
decoded <- layer_dense(decoded, units = 5) | |
autoe <- keras_model(input_l, decoded) | |
encoder <- keras_model(input_l, encoded) | |
compile(autoe, loss = "mean_squared_error", optimizer = "rmsprop") | |
fit(autoe, xtrain, xtrain) | |
features <- predict(encoder, xtest) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment