A "Best of the Best Practices" (BOBP) guide to developing in Python.
- "Build tools for others that you want to be built for you." - Kenneth Reitz
- "Simplicity is alway better than functionality." - Pieter Hintjens
######################################################################################### | |
# This code ingests binary GIMMS FAPAR and LAI data and converts them to GeoTIFFs. | |
# The data was produced by the Climate and Vegetation Research Group of Boston University. | |
# The GIMMS data are available from: http://cliveg.bu.edu/modismisr/lai3g-fpar3g.html | |
# title : GIMMS3g_LAI_FPAR_Binary2Geotiff.r | |
# purpose : Converts binary GIMMS FAPAR/LAI to GeoTIFFs | |
# author : Abdulhakim Abdi (@HakimAbdi) | |
# input : Binary 8-bit unsigned integer with ieee-be byte order | |
# output : Georeferenced TIFF, ArcGIS-ready files |
######################################################################################### | |
# title : ManhattanLST.R | |
# purpose : Converts Landsat ETM+ thermal imagery to degrees Celsius | |
# author : Abdulhakim Abdi (@HakimAbdi) | |
# input : Landsat TM / ETM+ band 6 | |
# output : Land surface temperature map in degrees Celsius | |
######################################################################################### | |
# Install and load the required packages | |
install.packages(c("rgdal" "sp", "raster"), repos='http://cran.r-project.org') |
# ##### BEGIN GPL LICENSE BLOCK ##### | |
# | |
# This program is free software; you can redistribute it and/or | |
# modify it under the terms of the GNU General Public License | |
# as published by the Free Software Foundation; either version 2 | |
# of the License, or (at your option) any later version. | |
# | |
# This program is distributed in the hope that it will be useful, | |
# but WITHOUT ANY WARRANTY; without even the implied warranty of | |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
library(xlsx) | |
library(smatr) | |
# get data, from publication Wright et al 2004. DOI: [10.1038/nature02403](http://doi.org/10.1038/nature02403) | |
download.file("http://www.nature.com/nature/journal/v428/n6985/extref/nature02403-s2.xls", "wright-2004.xls") | |
dat.Wright <- read.xlsx2("wright-2004.xls", sheetIndex=1, startRow=11, stringsAsFactors=FALSE, check.names=TRUE) | |
## Clean data | |
dat.Wright <- dat.Wright[names(dat.Wright) != " "] # Drop blank columns | |
for(v in c("log.LMA","log.LL")) |
################################################################################################# | |
# title : pload.R | |
# purpose : Install and load uninstalled packages, or load installed ones. | |
# author : Abdulhakim Abdi (@HakimAbdi) | |
# input : Package name in quotes | |
# output : Installation and loading of uninstalled packages, or loading of installed ones. | |
################################################################################################# | |
pload <- function(x){ | |
if(x %in% rownames(installed.packages())) |
############################################################################################# | |
# title : Gridded Correlation of Time Series Raster Data (Gridcorts) | |
# purpose : Pixelwise time series correlation and significance based on Pearson's r, | |
# : Spearman's rho or Kendall's tau | |
# author : Abdulhakim Abdi (@HakimAbdi) | |
# input : Raster brick comprising two time series of equal number of layers | |
# output : Raster object of pixelwise correlation, significance or both (i.e. brick) | |
# : based on the chosen method | |
# update : Minor based suggestion from Tao Xiong of Northeast Normal University in China. | |
# data : Test data: https://1drv.ms/u/s!AsHsKb_qtbkwgvoQuHnPaFazPr_XnA?e=fJ9fue |
''' | |
Created on May 26, 2015 | |
@author: vinnie, [email protected] | |
Power-law results from: | |
"DATA FORENSIC TECHNIQUES USING BENFORD’S LAW AND ZIPF’S LAW FOR KEYSTROKE | |
DYNAMICS", Aamo Iorliam, Anthony T.S. Ho, Norman Poh, Santosh Tirunagari, | |
and Patrick Bours. IWBF 2015. |