Skip to content

Instantly share code, notes, and snippets.

@fdeheeger
Created June 2, 2014 15:54
Show Gist options
  • Save fdeheeger/ea94a81ab07ff0c1d040 to your computer and use it in GitHub Desktop.
Save fdeheeger/ea94a81ab07ff0c1d040 to your computer and use it in GitHub Desktop.
rcparams issues in seaborn
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
{
"metadata": {
"name": "",
"signature": "sha256:0a0374a6651512dbf52dc5df78905ffa3600ededc92ba1329a9ae429f90b70ca"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# matplotlib rc stuff\n",
"last update 2014-06-02\n",
"<hr style=\"width:100%; color:#20435C; background-color:#20435C; height:5px;noshade:noshade;\" /> "
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import matplotlib.pyplot as plt\n",
"import matplotlib\n",
"\n",
"%matplotlib inline"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 1
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.plot(range(5))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 2,
"text": [
"[<matplotlib.lines.Line2D at 0x32f3050>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGABJREFUeJzt3X+sXGWdx/F3Kb9Ewq3GUJB2cl1+GMheATWFrZftVdgb\ni27XKAlgZOO6ic1e6pKwGMFodk1MZMkGAUXBXwm43DZENkClRKNC947G7sa2MEvB8GvTArWN24UF\nu0TY3v3jzNjpYaZzZu4zc55n5v1KJveemdPpJw/03O/9zJkzIEmSJEmSJEmSJEmSJEmSNPQWA9uA\njW0evwV4EngEOHdQoSRJrR1RcL+rgB3AfIvHLgZOA04HPg18M0w0SVKvihzcl5EdwL8DLGrx+Brg\njvr3W4AlwNIg6SRJPSlycP8q8FngQJvHTwF2NW0/R/YDQZJUkk4H9w8De8n69lZTe0P+sVb1jSRp\nQI7s8PhKstrlYuBY4ATgTuAvm/Z5HljetL2sft8h7rrrrvmlS21rJKkbu3fvfvqKK644rds/1+ng\n/vn6DWAVcA2HHtgB7gfWARuA84EXgT35J1q6dCnvfve7u803cNdffz3XXntt2TE6Mmc4KWQEc4YW\nW849L/+eG+d2su2FlwGYHB/jMyuXA5zay/N1OrjnNeqWtfWvtwObyCb7p4DfAX/VS5BY7Ny5s+wI\nhZgznBQygjlDiyXn/Pw8m379X3x7y/Psf+0AJxyzmHUrl7Pqj5awaNEinu3xebs5uG+u3yA7qDdb\n1+PfL0kjq920/pbjjlrwc3c7uQ+9j3/842VHKMSc4aSQEcwZWpk5O03rIYR5lgJ+8pOfzKfQuUtS\nP3U7rW/dupWLLrqo62N10XeojoxqtVp2hELMGU4KGcGcoQ065/z8PA888VvW/svjbHvhZU44ZjGf\nf/84X7zwHUFqmDxrGUnqs3526+1Yy0hSn4To1nutZZzcJakPypjWm9m559gXhpVCzhQygjlD61fO\nQXfr7Ti5S1IgZU/rzezcJWmB+nneup27JJUgpmm9mZ17zqj3haGlkDOFjGDO0BaaM5ZuvR0nd0nq\nUqzTejM7d0kqaBDXhMmzc5ekPkphWm9m554zKn3hoKSQM4WMYM7QiuaMvVtvx8ldktpIbVpvZucu\nSTlldOvt2LlLUgApT+vN7Nxzhq0vLFsKOVPICOYMLZ8z1W69nSKT+7Fkn516DHA0cB9wXW6fqfr9\nz9S37wG+HCaiJPXXsEzrzYr2OMcB+8l+GFSBa+pfG6aAq4E17Z7Azl1SbGLq1tvpd+e+v/71aGAx\nsK/FPnGshCQVMIzTerOinfsRwHZgD/AQsCP3+DywEngE2AScFSrgoKXaF8YqhZwpZARzhtLo1i+9\nYf1QdOvtFJ3cDwDnAGPAj8hqmIebHt8KLCeb8FcD9wJnhAopSSE0T+uvvn6ADwzZtN6s21MhXwIe\nAN7LoQf3l5u+fxD4BvBWcvXNzMwMlUoFgLGxMSYmJpicnAQO/rR3u9h2475Y8qS8PTk5GVWew203\nxJInlfWcm5tjy67/ofraMva/doD/2/konzj3JK688B0sWrSo9HzN29VqldnZWQAqlQrT09P0okhP\n/jbgdeBF4E1kk/uXgJ827bMU2EtWz6wA7gbGm5/EF1QllSH1br3XF1SLdO4nAz8j69y3ABvJDuxr\n6zeAS4BafZ+bgMu6DRKL2PvCBnOGk0JGMGe3Op23HkvOfilSy9SAViP37U3f31q/SVLpUp/WQ/Da\nMpKGRgrnrXfLa8tIGmlO64fy2jI5qfRw5gwnhYxgznZ6vSZMKuvZKyd3SclyWm/Pzl1ScoaxW2/H\nzl3SSHBaL8bOPSeVHs6c4aSQEcwZ+nrrqaxnr5zcJUXPab17du6SojVK3Xo7du6ShorT+sLYueek\n0sOZM5wUMsLo5BzUZ5mmsp69cnKXFA2n9XDs3CWVzm69PTt3SUlyWu8PO/ecVHo4c4aTQkYYvpyD\n6tbbSWU9e+XkLmngnNb7z85d0sDYrXfPzl1S1JzWB8vOPSeVHs6c4aSQEdLNWXa33k4q69mrTpP7\nscBm4BjgaOA+4LoW+90CrAb2A58EtoWLKClVTuvlKdLjHEd20D4SqALX1L82XAysq389D7gZOD//\nJHbu0uiwWw+nn537/vrXo4HFwL7c42uAO+rfbwGWAEuBPd2GkZQ+p/U4FOncjwC2kx2sHwJ25B4/\nBdjVtP0csCxIuhKk0sOZM5wUMkL8ORvd+qU3rI+qW28n9vVcqCKT+wHgHGAM+BEwBTyc2yf/K8N8\nqyeamZmhUqkAMDY2xsTEBJOTk8DBhS57uyGWPO22a7VaVHlSX88Utmu1WlR5mrc3/vgh7n50L3uW\nnMGrrx/g9N89yUfHT2Tq1HdFkS+l9axWq8zOzgJQqVSYnp6mF932OF8E/hf4p6b7biM72G+obz8B\nrCJXy9i5S8OnVbd+5crlTNmtB9Ovzv1twOvAi8CbgD8DvpTb536yF1Q3kL2Q+iL27dLQs1uPW6fO\n/WTgZ2Sd+xZgI/BTYG39BrAJeAZ4CrgdmOlL0gFJpYczZzgpZIR4cnY6bz2WnJ2kkrNXnSb3GtCq\nS7k9t70uTBxJMXNaT4fXlpHUkeetl8dry0jqC6f1NHltmZxUejhzhpNCRhh8zl6vCeN6xsHJXdIb\nOK2nz85d0h/YrcfHzl3SgjitDxc795xUejhzhpNCRuhfztDXWx/19YyFk7s0wpzWh5eduzSC7NbT\nYecuqRCn9dFg556TSg9nznBSyAgLzzmozzIdlfWMnZO7NAKc1kePnbs0xOzW02fnLukQTuujzc49\nJ5UezpzhpJARiuccVLfezrCtZ6qc3KUh4rSuBjt3aQjYrQ8vO3dpRDmtqxU795xUejhzhpNCRnhj\nzrK79XZSXc9hU2RyXw7cCZwIzAPfAm7J7TMF3Ef2QdkA9wBfDhNRUp7Tujop0uOcVL9tB44HfgV8\nBHi8aZ8p4GpgTbsnsXOXFs5uffT0s3P/Tf0G8ArZQf3tHHpwhwG+OCuNIqd1daPbzn0cOBfYkrt/\nHlgJPAJsAs5acLKSpNLDmTOc2DM2uvVLb1gfVbfeTuzr2ZBKzl51c7bM8cAPgKvIJvhmW8m6+f3A\nauBe4Iz8E8zMzFCpVAAYGxtjYmKCyclJ4OBCl73dEEuedtu1Wi2qPKmvZ6zbp5+9ghvndrJ5bo79\nLzzFJasu4DMrl/PY1i38fHf5+VLertVqUeVpbFerVWZnZwGoVCpMT0/Ti6JVylHAD4EHgZsK7P8s\n8B5gX+MOO3epOLt1NfSzc18EfBfYQfsD+1JgL1k9s6L+Z/a12VfSYditK4Qinfv7gE8A7we21W+r\ngbX1G8AlQI3sjJqbgMuCJx2QVHo4c4YTS8ZO563HkrMTc8ahyORepfMPgVvrN0k9cFpXaF5bRiqR\n3bo68doyUmKc1tVPXlsmJ5UezpzhDDpjr9eESWEtwZyxcHKXBshpXYNi5y4NgN26emXnLkXKaV1l\nsHPPSaWHM2c4/coY+nrrKawlmDMWTu5SHzitq2x27lJAdusKzc5dKpnTumJi556TSg9nznAWmnFQ\nn2WawlqCOWPh5C4tgNO6YmXnLvXAbl2DYucuDYjTulJg556TSg9nznCKZhxUt95OCmsJ5oyFk7tU\ngNO6UmPnLh2G3brKZucuBea0rpTZueek0sOZM5x8xrK79XZSWEswZyyKTO7LgTuBE4F54FvALS32\nu4Xsg7P3A58k+yBtKSlO6xoWRXqck+q37cDxwK+AjwCPN+1zMbCu/vU84Gbg/OYnsXNXzOzWFat+\ndu6/qd8AXiE7qL+dQw/ua4A76t9vAZYAS4E93QaSBs1pXcOo2859HDiX7ADe7BRgV9P2c8Cy3mOV\nJ5UezpwL1+jWL71hfVTdejsxr2Uzc8ahm7Nljgd+AFxFNsHn5X9tmM/vMDMzQ6VSAWBsbIyJiQkm\nJyeBgwtd9nZDLHnabddqtajypLaeG3/8EHc/upc9S87g1dcPcPrvnuSj4ycydeq7osjXartWq0WV\nJ/XtWNezWq0yOzsLQKVSYXp6ml4U7XGOAn4IPAjc1OLx24CHgQ317SeAVTTVMnbuikGrbv3KlcuZ\nsltXpPrZuS8CvgvsoPWBHeB+shdUN5C9kPoi9u2KjN26RkmRzv19wCeA95Od3riN7JTHtfUbwCbg\nGeAp4HZgJnjSAUmlhzNncZ3OW48hYxHmDCuVnL0qMrlXKfZDYN0Cs0jBOa1rVHltGQ0lz1vXsPDa\nMlKd07rktWXeIJUezpxv1Os1YVzLsMwZByd3DQWndelQdu5Kmt26hp2du0aO07rUnp17Tio93Cjn\nDH299VFey34wZxyc3JUUp3WpGDt3JcFuXaPKzl1Dy2ld6p6de04qPdwo5BzUZ5mOwloOkjnj4OSu\nKDmtSwtj566o2K1Lh7JzV/Kc1qVw7NxzUunhhinnoLr1hWSMgTnDSiVnr5zcVSqndak/7NxVCrt1\nqRg7dyXDaV3qPzv3nFR6uBRzlt2tF8kYM3OGlUrOXhWZ3L8HfAjYC0y0eHwKuI/sA7IB7gG+HCKc\nhofTujRYRXqcC4BXgDtpf3C/GlhzuCexcx9NduvSwvSzc58Dxjvs479SvYHTulSeEJ37PLASeATY\nBJwV4DlLk0oPF3PO5m5989xcNN16OzGvZTNzhpVKzl6FOFtmK7Ac2A+sBu4Fzmi148zMDJVKBYCx\nsTEmJiaYnJwEDi502dsNseRpt12r1aLK09g+/ewV3Di3k81zcwBMnPRmbvjYmTy2dQs/311+vpS3\na7VaVHlS3451PavVKrOzswBUKhWmp6fpRdE6ZRzYSOvOPe9Z4D3AvuY77dyHm9261B9lnue+lOxM\nmnlgBdkPjH2H/RMaKnbrUnyKdO7rgV8A7wR2AZ8C1tZvAJcANWA7cBNwWfiYg5NKDxdDziLnrceQ\ns5MUMoI5Q0slZ6+KTO6Xd3j81vpNI8RpXYqb15ZRV+zWpcHy2jLqO6d1KR1eWyYnlR5ukDkXck2Y\nFNYzhYxgztBSydkrJ3cdltO6lCY7d7Vkty7Fwc5dwTitS+mzc89JpYfrR85+XG89hfVMISOYM7RU\ncvbKyV2A07o0bOzcR5zduhQ3O3d1zWldGl527jmp9HALyTnIzzJNYT1TyAjmDC2VnL1ych8xTuvS\naLBzHxF261Ka7NzVltO6NHrs3HNS6eGK5Bxkt95OCuuZQkYwZ2ip5OyVk/uQclqXRpud+5CxW5eG\ni527nNYl/YGde04qPVxzzhi69XZSWM8UMoI5Q0slZ6+KTO7fAz4E7AUm2uxzC7Aa2A98EtgWIpw6\nc1qX1EqRHucC4BXgTlof3C8G1tW/ngfcDJyf38nOPSy7dWk09LNznwPGD/P4GuCO+vdbgCXAUmBP\nt2FUjNO6pE5CdO6nALuatp8DlgV43lLE3MM1d+ub5+ai6tbbiXk9G1LICOYMLZWcvQp1tkz+V4b5\nVjvNzMxQqVQAGBsbY2JigsnJSeDgQpe93RBLnsb2xh8/xN2P7mXPkjMAOOnV5/jrk9/B1KnviiJf\nauuZ4natVosqT+rbsa5ntVpldnYWgEqlwvT0NL0o2uOMAxtp3bnfBjwMbKhvPwGsIlfL2Ln3xm5d\nGm1lnud+P9kLqhvIXkh9Efv2IOzWJfWqSOe+HvgF8E6ybv1TwNr6DWAT8AzwFHA7MBM+5uDE0MMV\nOW89hpxFpJAzhYxgztBSydmrIpP75QX2WbfQIMo4rUsKwWvLRMJuXVIrXlsmYU7rkkLz2jI5g+zh\nFnJNmFT6whRyppARzBlaKjl75eReEqd1Sf1k5z5gduuSumHnngCndUmDYuee048erh/XW0+lL0wh\nZwoZwZyhpZKzV07ufea0LqkMdu59YrcuKQQ794g4rUsqm517zkJ6uEF+lmkqfWEKOVPICOYMLZWc\nvXJyD8RpXVJM7NwXyG5dUj/ZuZfAaV1SrOzcc4r0cIPs1ttJpS9MIWcKGcGcoaWSs1dO7l1yWpeU\nAjv3guzWJZXBzr2PnNYlpaZo5/5B4AngSeBzLR6fAl4CttVvXwgRrgzNPVwM3Xo7qfSFKeRMISOY\nM7RUcvaqyOS+GPg6cBHwPPDvwP3A47n9NgNrgqYrkdO6pJQV6XH+BPh7sukd4Nr61+ub9pkC/g74\n83ZPkkrnbrcuKSb97NxPAXY1bT8HnJfbZx5YCTxCNt1fA+zoNkzZnNYlDYsinft8gX22AsuBs4Gv\nAfcuJNSgNXfrm+fmourW20mlL0whZwoZwZyhpZKzV0Um9+fJDtwNy8mm92YvN33/IPAN4K3Avuad\nZmZmqFQqAIyNjTExMcHk5CRwcKEHvX362Su4cW4nm+fmAJg46c3c8LEzeWzrFn6+e/B5im7XarWo\n8rTbboglT8rbtVotqjypb8e6ntVqldnZWQAqlQrT09P0okiPcyTwa+BC4AXg34DLOfQF1aXAXrIp\nfwVwNzDe/CSxde5265JS0M/O/XVgHfAjsjNnvkt2YF9bf/x24BLgb+r77gcu6zbIINmtSxp2Rc9z\nfxB4J3Aa8JX6fbfXbwC3An8MnEP2wuovA2YMpsh566n0cOYMJ4WMYM7QUsnZq5F5h6rTuqRRMvTX\nlrFbl5Qyry3TgtO6pFE1lNdzX8g1YVLp4cwZTgoZwZyhpZKzV0M3uTutS9IQde5265KG0Uh37k7r\nknSopDv3flxvPZUezpzhpJARzBlaKjl7lezk7rQuSe0l17nbrUsaJSPRuTutS1IxSXTug/ws01R6\nOHOGk0JGMGdoqeTsVfSTu9O6JHUv2s7dbl2Shqxzd1qXpIWJqnMfZLfeTio9nDnDSSEjmDO0VHL2\nKprJ3WldksIpvXO3W5ek9pLs3J3WJak/inTuHwSeAJ4EPtdmn1vqjz8CnNvpCWPo1ttJpYczZzgp\nZARzhpZKzl51OrgvBr5OdoA/C7gcODO3z8VkH5x9OvBp4JuHe8I9L/+eax98mpuru9j/2gEmx8f4\n9sfOZOrUt0RRw9RqtbIjFGLOcFLICOYMLZWcvepUy6wAngL+s769AfgL4PGmfdYAd9S/3wIsAZYC\ne/JP9sATv42+W3/ppZfKjlCIOcNJISOYM7RUcvaq08H9FGBX0/ZzwHkF9llGi4P7zdVsN7t1Seqv\nTgf3+YLPkx+9W/65E45ZzJUrlzMV2bTebOfOnWVHKMSc4aSQEcwZWio5e9XpCHs+8A9knTvAdcAB\n4B+b9rkNeJissoHsxddV5Cb373//+0+dfPLJpy4sriSNlt27dz99xRVXnBb6eY8EngbGgaOB7bR+\nQXVT/fvzgV+GDiFJCm818GuyF1avq9+3tn5r+Hr98UeA/n0KtiRJkqRwgr/pqU865ZwCXgK21W9f\nGFiyg75H9trF4U7IjWEtO+Wcovy1XA48BDwG/Afwt232K3s9i+Scovz1PJbs1OftwA7gK232K3s9\ni+Scovz1hOx9RduAjW0eL3UtF5PVM+PAUXTu6M+jnI6+SM4p4P6BpnqjC8j+I7Y7aMawltA55xTl\nr+VJwDn1748nqxpj/H+zSM4pyl9PgOPqX48kW6vJ3OMxrCd0zjlFHOt5NXAXrbN0vZahL/nb/Kan\n1zj4pqdm7d70NEhFcsIAL6zWxhzw34d5PIa1hM45ofy1/A3ZD3GAV8jeiPf23D4xrGeRnFD+egLs\nr389mmxg2pd7PIb1hM45ofz1XEZ2AP9Omyxdr2Xog3urNzSdUmCfZYFzdFIk5zywkuxXoE1kl1+I\nTQxrWURsazlO9pvGltz9sa3nOK1zxrKeR5D9INpDViXtyD0ey3p2yhnDen4V+CzZqeatdL2WoQ/u\nQd/01EdF/r6tZP3n2cDXgHv7mqh3Za9lETGt5fHAD4CryCbjvFjW83A5Y1nPA2QV0jLgT8nqjbwY\n1rNTzrLX88PAXrK+/XC/QXS1lqEP7s+TLVLDcrKfMIfbZ1n9vkEqkvNlDv469yBZN//W/kfrSgxr\nWUQsa3kUcA/wz7T+BxzLenbKGct6NrwEPAC8N3d/LOvZ0C5n2eu5kqx2eRZYD3wAuDO3T+lrmcqb\nnorkXMrBn5QrOHjxtEEbp9gLqmW/gWyc9jljWMtFZP9gvnqYfWJYzyI5Y1jPt5H1vgBvAv4VuDC3\nTwzrWSRnDOvZsIrWZ8vEsJbJvOmpU84ryU5F2w78gmxBB2098ALwe7K+7VPEuZadcsawlpNkv55v\n5+Apb6uJbz2L5IxhPSfI6oztwKNkfTHEt55Fcsawng2rOHi2TGxrKUmSJEmSJEmSJEmSJEmSJEmS\nJEkH/T+ITrxXN8AHFwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x322c850>"
]
}
],
"prompt_number": 2
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"matplotlib.rcParams['grid.color'] = 'r'\n",
"matplotlib.rcParams['grid.linewidth'] = 3\n",
"plt.plot(range(5))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 3,
"text": [
"[<matplotlib.lines.Line2D at 0x33d7550>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEACAYAAABI5zaHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzBJREFUeJzt3X+MF/Wdx/HnwiKL2bhotNTCrqtYPS/xLC0BDr+FPbpH\nxH7lTNqkldSLmrbEiGdKNYekV6z10t1crlXOH0e1TdBetT8gWldNDXetdWIhV79I68G1qD2/sFI8\nypUu7HG7C9/7Y2bY2fH7Y77f78x3Pp/v9/VINruz32H25UeY73tf39lZEBERERERERERERERERER\nERERERFpetOB3cCzJR7fDOwH9gALGhVKRESKmxZxvzuAvUChyGPXApcCHwQ+DzwSTzQREalVlJP7\nPNwT+GNAW5HHVwNbvY93AbOBObGkExGRmkQ5uX8DuAs4XeLxucCBwPZB3CcEERFJSaWTexZ4F7dv\nLza1+8KPFatvRESkQdorPL4Ut3a5FugAzgEeB/46sM8w0B3Ynud9bornvvWtwsyLLqorrIhIqzl0\n6NCbN95446XV/rlKJ/eN3hvAcuBOpp7YAX4ErAOeApYAfwAOhw8086KLWPrii5zcsAGAjoEBAOO2\n7wE2bNhgTJ5S27/IZslkMsbksXk9BwYGuAeMyVNq23EcFg4NGZNH6xnv9omxU2xc+Cl2vzPC517c\nSs/smVx2/30A86lBuaolbDnwRdxJfq33uS3e+weBa4ATwM1ALvyHd+zYUQie3E3UMTDAfY7DlwIn\nTRMpZ3xsyAjKGTeTchYKBZ7/9e95dNcwo+OnOWfmdNYt7Wb5JbOZNTjIKytX0t/fX825Gqg8uQe9\n5L3B5Endt67aLywi0uoOj4zx9Zfz7H5nBIBMbxe3L+3m3LNn1H3sqp8NarVjx47Chz/84UZ9uZo5\njkMmk0k7RkXKGR8bMoJyxi3NnOWm9ba2qaflXC5X0+Suk7uISANVO63XenKvppapW8fAQOr9Vjn+\nixyAcsbAhpw2ZATljFsaOauZ1qfkXLmypq/X0JO7iEgrSrJbL0W1jIhIQmqZ1sOsqGVERFpFGtN6\nkDr3APWF8bIhpw0ZQTnjlmTOOKb1KTnVuYuIpCvtaT1InbuISJ3inNbD1LmLiKTApGk9SJ17gPrC\neNmQ04aMoJxxiyNnktP6lJzq3EVEGsPUaT1InbuISESNmNbD1LmLiCTIhmk9SJ17QCv1hY1gQ04b\nMoJyxq2anGlM61NyqnMXEYmXbdN6kDp3EZGQNKf1MHXuIiIxsHlaD1LnHtCMfWGabMhpQ0ZQzrgV\ny2nStD4lZ4Kdewfu706dCZwFPAPcHdqnz/v8W972NuC+mhKJiDRYs0zrQVGfjs4GRnGfDBzgTu+9\nrw9YD6wudQB17iJiGhOn9bCkO/dR7/1ZwHTgaJF9zFgJEZEImnFaD4p6cp8G5ID5wCPA3tDjBWAp\nsAcYxp3sw/uoc4+JcsbHhoygnHEqFAocvGsTrw6PsPBUgTevu8W4ad3XiOvcTwMfArqAH+PWMD8N\nPJ4DunEn/FXA08Bl7/lizmST4/8l8P8CmLDd7jhMZDLG5Cm3HVxLE/LYup6+dseZMnyYki/8/1vr\nWd/227et5+sv51n7k5/xZ8B/f2Qxj37iCi7c/I9G5Cu1nrWo9mqZY8BzwEKmntxHAh+/ADwMnEeo\nvrkHmPBCr8jnWdbTU+WXT9ZEJhPr4ibl5IYNRufz2bCepufz+Sd1U6dhn8nruf/IKLdv38fo+Gle\nv3wBi7q7WDSwybhp3XEcdgaezGub26Od3M8HJoA/ALOAvwS+EtpnDvAubj2zCLd/f08v/yUL/rGL\nSHM5PDLG/v1HOTQyxuifnCbT28XqKy6gY8Y0Thp2YgfIZDL0B57Mc7lcTceJ8l92JbAVt3efBjwB\n/AOw1nt8C3AbcCvuk8Ao7pUzO4MH2bFjR2Hpiy8aPXnY0BeCcsbJhoygnLUodyXMrMHBM/ulnbOc\njoEBXlm5MrGrZX4FFLuGcUvg44e8NxGR1DX7lTBR6N4yItI0bLhuvVq6t4yItDRN61Pp3jIBJvWF\n5ShnfGzICMpZTi3TulXrqfu5i0ir0bRemjp3EbFOM3brpahzF5GWoGk9GnXuAVb1cB7lrI8NGUE5\nId5p3ar1VOcuIs1K03r11LmLiLFaqVsvRZ27iDQVTev1UeceYFUP51HO+tiQEVorZyOmdavWU527\niNhO03p81LmLSOrUrZemzl1ErKRpPRnq3AOs6uE8ylkfGzJCc+ZMc1q3aj3VuYuILTStJ0+du4g0\njLr16qlzFxGjaVpvLHXuAVb1cB7lrI8NGcHunCZO61atZ0KdewfwEjATOAt4Bri7yH6bgVW4vxz7\nJmB3TWlEpKloWk9PlKfNs3FP2u2AA9zpvfddC6zz3i8GHgCWhA+izl2kdZg4rdsqyc591Ht/FjAd\nOBp6fDWw1ft4FzAbmAMcrjaMiNhP07oZopzcpwE5YD7wCLA39Phc4EBg+yAwjyIn985sluNDQ8Bk\n5+X3XSZstzsOE5nMlMwm5fO3/ayA1rPObZ+fNe08pbY7s1mAMxnTzlNqe/+RUV4dHmHtb3bz+uUL\nOOerX2b5JbOZNThoRD7b1hNI9Dr308CHgC7gx0Af8NPQPuFvGQrFDnRvPs+YF3pFPs+ynp4qooqI\nqU6MneLnbx/j0MgYAF0d7ay+4gKYf27KyezjOA47ncnme0UDfojpGPAcsJCpJ/dhoDuwPc/73Hts\nXLOm5ORkgmKTm4mCk4bJbFhP0/P5/O+ATLuyw+/Wx/cdYfxUge9ddwu3Le1m7g+2AHAy5XylmLqe\nAJlMhv5AvlwuV9NxKpX05wMTwB+AWbiT+1eAfw3sE3xBdQlwP3pBVaTpqVtvjKReUL0Q98XSad7b\nE7gn9rXe41uA53FP7G8AJ4CbSx1M17nHQznjY0NGMCtnuSth/G4d0s9ZjknrWU6S17n/Cig2bm8J\nba+r6auLiFU0rdtD95YRkYp03Xp6dG8ZEUmEpnU76d4yAVb1cB7lrI8NGSGdnLVM61rPeOl+7iIS\nK03r9lPnLiJnqFs3jzp3EamLpvXmos49wKoezqOc9bEhIySbM85pXesZL3XuIlITTevNS527SAtS\nt24Pde4iEomm9dagzj3Aqh7Oo5z1sSEjxJOzEdN6K61nI6hzF5GyNK23HnXuIk1M3br91LmLyBSa\n1lubOvcAq3o4j3LWx4aMUF3ONKf1ZlzPNKlzFxFA07pMUucu0gTUrTcvde4iLUrTuhSjzj3Aqh7O\no5z1sSEjFM9p4rRu83qaKOnOvRt4HHgfUAC+CWwO7dMHPAO85W1vA+6rKZGIVKRpXSqJ8vT+fu/t\nNaATeBW4HtgX2KcPWA+sLnUQde4i9TNxWpdkJdm5/857AziOe1L/AFNP7tDAF2dFWpGmdalGtZ17\nL7AA2BX6fAFYCuwBhoE7gb3hP9yZzXJ8aAiY7Lz8vsuE7XbHYSKTmZLZpHz+tp8V0HrWue3zs6ad\np9h2oVBg/GPX8L8jYyy8+CrevO4WHnx9O71HOjjZn34+29YT3HMRcCZj2nnKrmcDrnPvBH4I3IE7\nwQflcLv5UWAV8DRwWfgA9+bzjHmhV+TzLOvpqSGySOvwp/W1x/4PgJ7ZM3n0E1dw4XBHyskkKY7j\nsNMb3gBWJHxyn4H7Iul3cE/cYSOBj18AHgbOA44Gd9q4Zk3JZ3oTFJs0TBScNExmw3qanG//kVFu\n376P0fHTvH75AhZ1d7FoYJPR3brJ6xnkf0dp4pUymUyG/kC+XC5X03Gi/C1pA7YCvwe+UGKfOcC7\nuPXMIuD7uBXOGXpBVSQadesSlOQLqlcDnwF+Cez2PrcR8DuVLcAngVuBCdxq5tPFDqTr3OOhnPEx\nKWO5K2FmDQ6e2S/tnOWYtJ7lWJUzwVrGAaZV2Och701EaqBpXeKme8uIpEjXrUslureMiGU0rUuS\ndG+ZAKt6OI9y1ieNjLVM6zasJShn3HQ/dxFLaFqXRlHnLtIA6talVurcRQylaV3SoM49wKoezqOc\n9UkyY5zTug1rCcoZN3XuIobRtC5pU+cuEiN16xI3de4iKdO0LiZR5x5gVQ/nUc76xJGxEdO6DWsJ\nyhk3de4iKdG0LqZS5y5SA3Xr0ijq3EUaRNO62ECde4BVPZxHOetTTcY0p3Ub1hKUM27q3EUSpmld\nbKPOXaQMdeuSNnXuIjHTtC42U+ceYFUP51HO+hTLaOK0bsNagnLGLenOvRt4HHgfUAC+CWwust9m\nYBXuL8i+iclfpi1iDU3r0iyijCHv995eAzqBV4HrgX2Bfa4F1nnvFwMPAEuCB1HnLiYzcVoXgWQ7\n9995bwDHcU/qH2DqyX01sNX7eBcwG5gDHK42kEijaVqXZlRt594LLMA9gQfNBQ4Etg8C8wid3Duz\nWY4PDQGTnZffd5mw3e44TGQyU/7DTMrnb/tZAa1nndv7j4zy6vAIa3+zm9cvX8A5X/0yyy+ZzazB\nQSPy+dud2SwAE5nMmb8DJuULdtjAmf/3aedpivVswHXuncAPgTtwJ/iw8LcNhfAO9+bzjHmhV+Tz\nLOvpqeLLi8TnxNgpfv72MQ6NjAHQ1dHO6isugPnnppxMWp3jOOz0hjeAFQmf3GcA24DvAE8XeXwY\n94VX3zzvc1NsXLOm5DO9CYpNGiYKThomM3E9/W59fN8Rxk8V+N51t3Db0m7m/mALACdTzleK/x2Q\nyVd2QOlJ3jQmr2cmk6E/kC+Xy9V0nCglfRtun/574Asl9gm+oLoEuB+9oCqGUbcuNkryBdWrgc8A\nv2Ty8saNgN+pbAGexz2xvwGcAG4udiBd5x4P5axOuSth/G497YyVmLKWlShnvJK+zt0BpkXYb11N\nCUQSpGldWpXuLSNNSdetS7PQvWVEPJrWRXRvmSms6uE8yjmplmldaxkv5YyX7ucuLU/TushU6tzF\naurWpdmpc5eWo2ldpDR17gFW9XCeVswZ57Te6msZN+WMlzp3aRma1kWiUecuVlC3Lq1Knbs0LU3r\nItVT5x5gVQ/naeacjZjWW2UtG0U546XOXZqOpnWR+qhzF6OoWxeZSp27WE/Tukh81LkHWNXDeZoh\nZ5rTerOtZdqUM17q3MVamtZFkqHOXVKhbl0kGnXuYg1N6yLJU+ceYFUP57Epp4nTuq1raSrljFfS\nnfu3gY8D7wJXFnm8D3gGeMvb3gbcV1MaaVqa1kUaK8q49FHgOPA4pU/u64HV5Q6izr01mTiti9gk\nyc79ZaC3wj76VyrvoWldJD1xdO4FYCmwBxgG7gT2FtuxM5vl+NAQMNl5+X2XCdvtjsNEJjMls0n5\n/G0/K2DkehYKBQ7etYlTL73Mwouv4ur2NhZ1d9F7pIOT/ennC277/P/3aecptd2ZzQKcyZh2Hq1n\nA9czxevcc0A3MAqsAp4GLiu24735PGNe6BX5PMt6emL48mISf1pfmP8jHzldoGf2TBZ3d9ExY1ra\n0USs4DgOO73hDWBFiif3kcDHLwAPA+cBR8M7blyzpuQzvQmKTRomCk4aJtl/ZJTbt+9jdPw0V7e3\ncXZ/H4sGNkFbGxiYF0pPnqbxv6M0+coO0HrGIZPJ0B/Il8vlajpO1K68F3iW4i+ozsG9kqYALAK+\nT5GOXi+oNi916yLJSfIF1SeB5cD5wAFgE+D/q90CfBK4FZjArWY+XepAus49HqbkrHQljCk5y7Eh\nIyhn3KzKmWAtc0OFxx/y3qSFaFoXMZvuLSNV0XXrIo2le8tI4jSti9hD95YJsKqH8zQiZ63Tug3r\naUNGUM64WZVT93OXJGhaF7GTOncpSt26iBnUuUtsNK2L2E+de4BVPZwnzpxxT+s2rKcNGUE542ZV\nTnXuUg9N6yLNRZ17i1O3LmI2de5SNU3rIs1LnXuAVT2cp5acjZrWbVhPGzKCcsbNqpzq3CUKTesi\nrUGde4tQty5iJ3XuUpKmdZHWo849wKoezlMuZ9rTug3raUNGUM64WZVTnbsEaVoXaW3q3JtM2tO6\niMRLnbtoWheRM9S5B1jVw3lObthg7LRuw3rakBGUM25W5Uywc/828HHgXeDKEvtsBlbh/oLsm4Dd\nNaWRqmlaF5Fioox1HwWOA49T/OR+LbDOe78YeABYEt5JnXu8TJ3WRSReSXbuLwO9ZR5fDWz1Pt4F\nzAbmAIerDSPRaFoXkUri6NznAgcC2weBeRQ5uXdmsxwfGgImOy+/7zJhu91xmMhkpmQ2KR/Atus/\ny/hX/p61v9nN9Glt/Pap7Sy/ZDazBgeNyGfbevr8rGnnKbXdmc0CnMmYdh6tZwPXM+Xr3MPfMhSK\n7XRvPs+YF3pFPs+ynp6YvnzzOzF2ip+/fYwHnAN87lSBro525nbN5KL556YdTURi5DgOOx3nzPaK\nFE/uw0B3YHue97n32LhmTclnehMUmzTS5nfr4/uOMH6qwDkzp3PB1zYx9wdb0o5WkYnrGWZ6Pp//\nHZDJV3aA1jMOmUyG/kC+XC5X03GilvS9wLNUfkF1CXA/ekE1FurWRSTJF1SfBJYD5+N265sA/+yy\nBXge98T+BnACuLnUgXSdezSVroQxJWclNuS0ISMoZ9ysyplgLXNDhH3W1fTV5T00rYtIHHRvGUPo\nunURKUb3lrGYpnURiZvuLRPQ6B6u1mndqr7QY2pOGzKCcsbNqpy6n7tdNK2LSJLUuTeYunURqYY6\ndwtoWheRRlHnHpBUDxf3tG5VX+gxNacNGUE542ZVTnXuZtK0LiJpUOeeEHXrIhIHde4G0bQuImlT\n5x5Qbw/XqGndqr7QY2pOGzKCcsbNqpzq3NOlaV1ETKLOvU7q1kUkSercU6BpXURMpc49IGoPl/a0\nblVf6DE1pw0ZQTnjZlVOde6NoWldRGygzj2itKd1EWlN6twTpGldRGwT9eR+De4vvp4OPAYMhh7v\nA54B3vK2twH3hQ9iW+du6rRuVV/oMTWnDRlBOeNmVc4EO/fpwINAPzAM/DvwI2BfaL+XgNU1pTCQ\npnURsVmU8fPPgU240zuA/zQ3ENinD/gicF2pg9jSuZs6rYtIa0qyc58LHAhsHwQWh/YpAEuBPbjT\n/Z3A3mrDpE3Tuog0iygn90KEfXJANzAKrAKeBi4L79SZzXJ8aAiY7Lz8vivN7UKhwMG7NnHqpZdZ\nePFVXN3exqLuLnqPdHCyP/184e2OgQHaHQfAyPX0t9sdh4lMhiCT8gX5WdPOU2q7M5sFOJMx7Txa\nzwauZ4Kd+zDuidvXjTu9B40EPn4BeBg4Dzga3OnefJ4xL/SKfJ5lPT3V5o2dP60vzP+Rj5wu0DN7\nJou7u+iYMS3taCLSghzHYac3vAGsSPDk/gvgg0Av8A7wKeCG0D5zgHdxp/xFuF3+0dA+bFyzpuQz\nfRr2Hxnl9u37GB0/zdXtbZzd38eigU3Q1gYG5CslOGmYrNjkZhrT8/n874BMvrIDtJ5xyGQy9Afy\n5XK5mo4TtaRfxeSlkN8Cvgas9R7bAtwG3ApM4FYz64GdwQOY9IKqunURsUWtL6g29CdUl774YqrP\nlJWuhLHq2lePctbHhoygnHGzKecrK1fqJ1TL0bQuIq2k6e8to+vWRcRmurdMEZrWRaRVNeX93Gud\n1m3q4XzKWR8bMoJyxs2qnLqfu0vTuohIE3Xu6tZFpBm1dOeuaV1EZCqrO/e4p3WrejiPctbHhoyg\nnHGzKmerde6a1kVESrOuc1e3LiKtpCU6d03rIiLRWNG5N2pat6qH8yhnfWzICMoZN6tyNmvnrmld\nRKR6xnbu6tZFRJqsc9e0LiJSH6M697Sndat6OI9y1seGjKCccbMqp+2du6Z1EZH4pN65pz2ti4iY\nzMrOXdO6iEgyopzcr2Hyl2M/BgwW2Wcz7i/RHgVuAnYXO5DfuZs6rVvVw3mUsz42ZATljJtVOWvs\n3KdVeHw68CDuCf5PgRuAK0L7XAtcCnwQ+DzwSLkDHh4ZY8MLb/KAc4DR8dNkert49BNX0Df/XCNq\nmJ/l82lHiEQ542NDRlDOuNmSs1aVTu6LgDeA/wLGgaeAvwrtsxrY6n28C5gNzCl2sG3Xf5a12/ex\n+50Rzpk5nY1/0cvffexiY2qYkxs28G89PUY/k4NyxsmGjKCccbMpZ60q1TJzgQOB7YPA4gj7zAMO\nhw/2gOPupm5dRCRZlU7uhYjHCfcpRf/co1vW89ZT2+m7ZDazBt3q3n9m8juwNLfbHYd2ivdxJuTz\ntzsGBlj53e/S6TgcHxpKPY/N6wnQ7jh0ZrNMZDKp5ym13ZnNsjKfp4PJvwMm5dN6JreetXbulUru\nJcA9uJ07wN3Aaaa+qPrPwE9xKxuA/wSWE5rcn3jiiTcuvPDC+TWlFBFpUYcOHXrzxhtvvDTu47YD\nbwK9wFnAaxR/QfV57+MlwM64Q4iISPxWAb/GfWH1bu9za70334Pe43uA5H4LtoiIiIiIxOca3N59\nP/C3JfbZ7D2+B1jQoFxhlXL2AcdwfyBrN/ClhiWb9G3c1y5+VWYfE9ayUs4+0l/LbuAnwH8ArwN/\nU2K/tNczSs4+0l/PDtxLn18D9gJfK7Ff2usZJWcf6a8nuD9XtBt4tsTjqa7ldNx6pheYQeWOfjHp\ndPRRcvYBP2poqvf6KO7/xFInTRPWEirn7CP9tXw/8CHv407cqtHEv5tRcvaR/noCnO29b8ddq0zo\ncRPWEyrn7MOM9VwP/AvFs1S9lpV+iKlasf7QU4Ki5IQG3lithJeB/ynzuAlrCZVzQvpr+TvcJ3GA\n48A+4AOhfUxYzyg5If31BPd2I+BebDEdOBp63IT1hMo5If31nId7An+sRJaq1zLuk3uxH2iaG2Gf\neTHnqCRKzgKwFPdboOdxb79gGhPWMgrT1rIX9zuNXaHPm7aevRTPacp6TsN9IjqMWyXtDT1uynpW\nymnCen4DuAv3UvNiql7LuE/usf7QU4KifL0cbv95FfBPwNOJJqpd2msZhUlr2Qn8ELgDdzIOM2U9\ny+U0ZT1P41ZI84BluPVGmAnrWSln2uuZBd7F7dvLfQdR1VrGfXIfxl0kXzfuM0y5feZ5n2ukKDlH\nmPx27gXcbv685KNVxYS1jMKUtZwBbAO+Q/F/wKasZ6Wcpqyn7xjwHLAw9HlT1tNXKmfa67kUt3b5\nLfAksAJ4PLRP6mtpyw89Rck5h8lnykW4/Xwaeon2gmraP0DWS+mcJqxlG+4/mG+U2ceE9YyS04T1\nPB+39wWYBfwM+FhoHxPWM0pOE9bTt5ziV8uYsJbW/NBTpZy34V6K9hrwCu6CNtqTwDvAGG7fdgtm\nrmWlnCasZQb32/PXmLzkbRXmrWeUnCas55W4dcZrwC9x+2Iwbz2j5DRhPX3LmbxaxrS1FBERERER\nERERERERERERERERERERERERERGZ9P/HrWcUg8XKvgAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x32f3ad0>"
]
}
],
"prompt_number": 3
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# seaborn from master\n",
"import sys\n",
"sys.path.insert(0, '/home/deheeger/Github/seaborn/')\n",
"import seaborn"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 4
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plt.plot(range(5))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 5,
"text": [
"[<matplotlib.lines.Line2D at 0x4cb88d0>]"
]
},
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/home/deheeger/Python/anaconda/envs/actarus/lib/python2.7/site-packages/matplotlib/font_manager.py:1236: UserWarning: findfont: Font family ['Arial'] not found. Falling back to Bitstream Vera Sans\n",
" (prop.get_family(), self.defaultFamily[fontext]))\n"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFXCAYAAABtOQ2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHXRJREFUeJzt3X+Q3HWd5/HnkB+AJiYsTCjJRFHCG8IuC1kUEb0jeHqQ\ngNn9AxTuKAs41PIWy7OOrTqt2rWs8p+9unJdVhbjhp+yK6iIIJCNV4pZsMqsLCGsTuK7IlHCWITk\nQmKSya8hfX+k0bGZme6Z7p7u77efjyqquvv7Sffnw2fSr3z7x2tAkiRJkiRJkiRJkiRJkiRJkiRJ\nkjQFfY0MiogZwNPAi5n5wTGO3wosB4aB6zNzQ0tnKUlSjzquwXGfAgaBSu2BiFgBLM7MM4GPAbe3\nbnqSJPW2ukEdEQPACmA1Y5+BrwTuAcjM9cD8iDi1lZOUJKlXNXJG/TfAXwBHxzm+ENg26vqLwECT\n85IkSdQJ6oi4Eni5+p7zRO9n1x573UvkkiRp8mbWOX4xsLL6PvQJwJsi4t7M/MioMUPAolHXB6q3\njevo0aOVvr6GPscmSVIhPT+0hy/+07/xq5f28ugX/2zKoTdhUGfmZ4HPAkTEJcAtNSEN8AhwM3B/\nRFwE7M7M7RPdb19fHzt27J3qnLtef/9c11dQZV4buL6ic33F8OrRo6z58Qs8/NRWXj1aYdnShTza\nxP3VO6OuVQGIiI8DZOaqzHw8IlZExBZgP3BDE/ORJKmwtu8aZvWjg/zi179h/pzZ3LBiCee+/WRu\naeI+Gw7qzFwHrKteXlVz7OYm5iBJUqFVKhWe2DDEN57YwuEjR3nXOafyXz8QzDlxVtP3PdkzakmS\nNMorew9x5+Ob+NnWXbzxhJncuGIJFy5p3beUDWpJkqagUqmwfnA7930vGT40wrlvP5nrl5/NSXOP\nb+njGNSSJE3SvgNHuHftz3l688scP2sGH7n8LC457zTa8Y0mg1qSpEnYuGUnd6/ZzJ79h1k8MI+b\nrljCgpPe0LbHM6glSWrAgUMjPPCDLfzLxl8zc0YfVy87g8sufAvHHdfeXhCDWpKkOnLbblY/OsjO\nPQcZ6J/DRz94DosWzJmWxzaoJUkax5GRV3noya2sXf8C9MEV734rK9/zNmbNbPSXTzbPoJYkaQwv\nbN/LPzw6yNCO/SyYfyI3XXkOiwfmTfs8DGpJkkaprQC9dOlCrr70DE6Y3ZnINKglSaoarwK0kwxq\nSVLPa2cFaLMMaklST2t3BWizDGpJUk+argrQZhnUkqSeM50VoM0yqCVJPWW6K0CbZVBLknpCpypA\nm2VQS5JKr5MVoM0yqCVJpdUNFaDNMqglSaXULRWgzTKoJUml0m0VoM0q5qwlSRrD6ArQeXNmc2MX\nVIA2y6CWJBVeN1eANsugliQV2q7fHOSuNZu7tgK0WQa1JKmQilIB2iyDWpJUOEWqAG2WQS1JKpSi\nVYA2y6CWJBVCUStAm2VQS5K6XpErQJtlUEuSulYZKkCbZVBLkrpSWSpAm1U3qCPiBGAdcDwwG3g4\nMz9TM2YZ8DDwfPWmBzPzC62dqiSpF5StArRZdVedmQcj4tLMHI6ImcBTEfHezHyqZui6zFzZnmlK\nknpBGStAm9XQP08yc7h6cTYwA9g1xrByf+xOktQ2lUqFx360lTu/+9PSVYA2q6GgjojjgGeAM4Db\nM3OwZkgFuDgiNgJDwC1jjJEk6XXKXgHarEmdBUfEPGAt8L8y84ejbp8LvFp9eXw58LeZGePdT6VS\nqUxxvpKkkqhUKqzbMMRXvv0c+w8c4YKzF/DJD53PyfNO7PTUWq6vicq0Sf/BiPhL4EBm/p8JxmwF\nLsjMsV4ip1KpVHbs2DvZhy6M/v65uL5iKvPawPUVXZnWV1sB+uH3LeaqD5zFzp37Oj21tliw4E1T\nDupGPvV9CjCSmbsj4kTgA8Dna8acCrycmZWIuBDoGy+kJUm9bbwK0DL2dLdCI+9Rvxm4p/o+9XHA\n1zLz+xHxcYDMXAVcBXwiIkaAYeCadk1YklRMvVoB2qxGvp7178CfjHH7qlGXbwNua+3UJEll0csV\noM3qzW+PS5KmhRWgzTOoJUltYQVoaxjUkqSWsgK0tfy/JklqGStAW8+gliQ1rVKp8MSGIb7xxBYr\nQFvMoJYkNcUK0PYyqCVJU1KpVFg/uJ37vpcMHxrh3LefzPXLz+akucd3emqlYlBLkiZt7/Bhvva9\n/G0F6EcuO4tLzj/NdrE2MKglSZMyXgWo2sOgliQ1ZHQF6Izj+rhq2RlcbgVo2xnUkqS6rADtHINa\nkjQuK0A7z6CWJI3JCtDuYFBLkn6PFaDdxf/rkqTfsgK0+xjUkiQrQLuYQS1JPW7Xbw5y1+Ob+Nkv\nX7ECtAsZ1JLUo6wALQaDWpJ6kBWgxWFQS1KPsQK0WAxqSeoRVoAWk0EtST3ACtDiMqglqcSsAC0+\ng1qSSqq2AvS/XbmEMwfmd3pamiSDWpJKprYCdNnShXzICtDCctckqUSsAC0fg1qSSsAK0PIyqCWp\n4KwALTeDWpIKygrQ3jBhUEfECcA64HhgNvBwZn5mjHG3AsuBYeD6zNzQhrlKkqqsAO0dE36RLjMP\nApdm5vnAHwOXRsR7R4+JiBXA4sw8E/gYcHu7JitJOlYB+ld3/CtPb36ZxQPz+PyN72TZ0oWGdEnV\nfek7M4erF2cDM4BdNUNWAvdUx66PiPkRcWpmbm/pTCWpxw0fPMLdazZbAdpj6gZ1RBwHPAOcAdye\nmYM1QxYC20ZdfxEYAAxqSWqR3Labu9ZsZvuuYStAe0wjZ9RHgfMjYh6wNiKWZeYPa4bV/nOu0qL5\nSVJPG10B2mcFaE9q+FPfmbknIh4D3gH8cNShIWDRqOsD1dsm1N8/t9GHLiTXV1xlXhu4viJ5fmgP\nX/ynZ/jVS3t588lv5H9cu5Rz3lbu8pIy7V+r1PvU9ynASGbujogTgQ8An68Z9ghwM3B/RFwE7G7k\n/ekdO/ZOccrdr79/rusrqDKvDVxfUYxXAbpo4UmlWN94yrJ/rVbvjPrNwD3V96mPA76Wmd+PiI8D\nZOaqzHw8IlZExBZgP3BDe6csSeVlBahqTRjUmfnvwJ+Mcfuqmus3t3hektRTrADVeGwmk6QOswJU\nEzGoJalDrABVIwxqSeoAK0DVKINakqbZxi07uXvNZvbsP8zigXncdMUSFpz0hk5PS13KoJakaXLg\n0AgP/GCLFaCaFINakqZBbtvN6kcH2bnnoBWgmhSDWpLaaHQFKFaAagoMaklqkxe27+UfHh1kaMd+\nFsw/kZuuPIfFA/M6PS0VjEEtSS1WWwF66dKFXH3pGZww26dcTZ4/NZLUQlaAqtUMaklqAStA1S4G\ntSQ1yQpQtZNBLUlTZAWopoNBLUlT8LoK0MvP4pLzrABV6xnUkjRJVoBqOhnUktSg0RWgM2f0cfWy\nM7jMClC1mUEtSQ2wAlSdYlBL0gSsAFWnGdSSNA4rQNUNDGpJqmEFqLqJP3WSNMroCtD5c2ZzgxWg\n6jCDWpKwAlTdy6CW1POsAFU3M6gl9SwrQFUEBrWknmQFqIrCoJbUc6wAVZEY1JJ6hhWgKiKDWlJP\nsAJURWVQSyo1K0BVdHWDOiIWAfcCC4AK8NXMvLVmzDLgYeD56k0PZuYXWjtVSZocK0BVBo2cUR8B\nPp2Zz0bEHODfIuL/ZuammnHrMnNl66coSZNjBajKpO5PbWa+BLxUvbwvIjYBpwG1Qe2nMSR1nBWg\nKptJ/fMyIk4HlgLraw5VgIsjYiMwBNySmYMtmaEkNaBSqfDYj7Zy53d/agWoSqXhoK6+7P0t4FOZ\nua/m8DPAoswcjojlwHeAaN00JWl8VoCqzBp6uToiZgGPAmsy80sNjN8KXJCZu8Y6XqlUKpOapSSN\noVKpsG7DEF/59nPsP3CEC85ewCc/dD4nzzux01OTfk9fE5V3jXzquw+4AxgcL6Qj4lTg5cysRMSF\nQN94If2aHTv2TmW+hdDfP9f1FVSZ1wblWt9YFaBXvf8sdu7cV5o11irT/o2l7OubqkZe+n4PcB3w\nXERsqN72WeAtAJm5CrgK+EREjADDwDVtmKskAeNXgNrTrTJq5FPfTwETNgNk5m3Aba2alCSNxQpQ\n9SK/VCipEKwAVa8yqCV1NStA1esMakldywpQyaCW1IWsAJV+x596SV2ltgL0xhVL+CMrQNXDDGpJ\nXaFSqfDEhiG+8cQWK0ClUQxqSR1nBag0PoNaUsdUKhXWD27nvu8lw4dGOPftJ3P98rM5ae7xnZ6a\n1DUMakkdMVYF6CXnnWa7mFTDoJY07carAJX0ega1pGljBag0eQa1pGlhBag0NQa1pLayAlRqjkEt\nqW2sAJWaZ1BLajkrQKXW8W+NpJayAlRqLYNaUktYASq1h0EtqWlWgErtY1BLmjIrQKX2M6glTYkV\noNL0MKglTZoVoNL0MaglNcwKUGn6GdSSGmIFqNQZBrWkCVkBKnWWQS1pXFaASp1nUEt6nbEqQD90\n6WKOnz2j01OTeo5BLen3WAEqdReDWhJgBajUrQxqSVaASl3MoJZ6mBWgUverG9QRsQi4F1gAVICv\nZuatY4y7FVgODAPXZ+aGFs9VUgtZASoVQyNfhDwCfDoz/xC4CPjziFgyekBErAAWZ+aZwMeA21s+\nU0kts3HLTv7qjn/l6c0vs3hgHp+/8Z0sO3+hIS11obpn1Jn5EvBS9fK+iNgEnAZsGjVsJXBPdcz6\niJgfEadm5vY2zFnSFA0fPMLdazZbASoVyKTeo46I04GlwPqaQwuBbaOuvwgMAAa11CVy227uWrOZ\n7buGWbRgDh+98hwGrACVul7DQR0Rc4BvAZ/KzH1jDKn9J3llovvr75/b6EMXkusrrrKt7fCRV/nH\nf97MQ+u20Adc/Z/O5Nr/fBazZpazvKRs+1fL9fWehoI6ImYBDwL3ZeZ3xhgyBCwadX2getu4duzY\n2+gcC6e/f67rK6iyra22AvSW697BKXNmsfuV4U5PrS3Ktn+1XF9vauRT333AHcBgZn5pnGGPADcD\n90fERcBu35+WOme8CtCBhfN9IpQKppEz6vcA1wHPRcRrX7n6LPAWgMxclZmPR8SKiNgC7AduaMts\nJdVlBahULo186vspGvgaV2be3JIZSZoSK0ClcrKZTCqBXb85yF1rNvOzrbusAJVKxqCWCswKUKn8\nDGqpoPYdOMK9a39uBahUcga1VEAbt+zk7jWb2bP/MIsH5nHTFUtYcNIbOj0tSW1gUEsFcuDQCA/8\nYIsVoFIPMailgshtu1n96CA79xxkoH8OH/3gOSyyAlQqPYNa6nJHRl7loSe3snb9C9AHV7z7rax8\nz9uYNbORX34nqegMaqmL1VaA3nTlOSwemNfpaUmaRga11IXGqgC9+tIzOGG2f2WlXuPfeqnLWAEq\naTSDWuoSVoBKGotBLXUBK0AljcegljrIClBJ9RjUUodYASqpEQa11AFWgEpqlEEtTSMrQCVNlkEt\nTRMrQCVNhUEttZkVoJKaYVBLbWQFqKRmGdRSG1gBKqlVfNaQWswKUEmtZFBLLWIFqKR2MKilFnhl\n7yHufHyTFaCSWs6glppgBaikdjOopSmyAlTSdDCopSmwAlTSdDGopUmwAlTSdDOopQZZASqpEwxq\nqQ4rQCV1Ut2gjog7gSuAlzPz3DGOLwMeBp6v3vRgZn6hlZOUOsUKUEmd1sgZ9V3A3wH3TjBmXWau\nbM2UpM6zAlRSt6j7rJOZT0bE6XWG+UkalYYVoJK6SStODyrAxRGxERgCbsnMwRbcrzStKpUKj/1o\nK3d+96dWgErqGq0I6meARZk5HBHLge8A0YL7laaNFaCSulVDL1lXX/r+7lgfJhtj7FbggszcNd6Y\nSqVSaXiGUhtVKhXWbRjiK99+jv0HjnDB2Qv45IfO5+R5J3Z6apJKpK+JysKmz6gj4lSOfSK8EhEX\nAn0ThfRrduzY2+xDd63+/rmurwDGqgC96v1nsXPnvlKsbyxl2bvxuL5iK/v6pqqRr2d9HbgEOCUi\ntgGfA2YBZOYq4CrgExExAgwD17RvulJrjFcBak+3pG7TyKe+r61z/DbgtpbNSGojK0AlFY1fClXP\nsAJUUhEZ1Cq9IyNHeejJ560AlVRIBrVKzQpQSUVnUKuUrACVVBY+a6l0tu8aZvVjg/xi6FgF6A0r\nlnCuFaCSCsqgVmlUKhWe2DDEN57YYgWopNIwqFUKVoBKKiuDWoVWqVRYv2k7961Nhg+NcO7bT+b6\n5Wdz0tzjOz01SWoJg1qFte/AEb629uf8ZFQF6CXnnWa7mKRSMahVSONVgEpS2RjUKpSDh49VgK57\n1gpQSb3BoFZh5Lbd3PHYIDt2WwEqqXcY1Op6VoBK6mUGtbqaFaCSep1Bra5kBagkHeOznrqOFaCS\n9DsGtbqGFaCS9HoGtbqCFaCSNDaDWh1lBagkTcygVsdYASpJ9RnU6ggrQCWpMQa1ppUVoJI0OQa1\npo0VoJI0eQa12s4KUEmaOoNabWUFqCQ1x6BWW7x69Cj/vP4FvvOkFaCS1AyfNdVyoytA582ZzY1W\ngErSlBnUaplKpcIPNwzxgBWgktQyBrVa4pW9h7jr8U381ApQSWqpukEdEXcCVwAvZ+a544y5FVgO\nDAPXZ+aGls5SXcsKUElqr0bOqO8C/g64d6yDEbECWJyZZ0bEu4DbgYtaN0V1q9dVgF52FpecbwWo\nJLVS3S+yZuaTwCsTDFkJ3FMdux6YHxG+5llyz/1iJ3+5ej0/2fwyiwfm8fkb38mypQsNaUlqsVa8\nR70Q2Dbq+ovAALC9BfetLnPw8Ahf/uazrP3xr5hxXB9XLTuDy60AlaS2adWHyWqfpSstul91EStA\nJWn6tSKoh4BFo64PVG+bUH//3BY8dPcq0/qOjLzKfWs289C6LfQBV73vTP7LZWcxa+aMTk+tLcq0\nd2NxfcXm+npPK4L6EeBm4P6IuAjYnZl1X/besWNvCx66O/X3zy3N+saqAH330oHSrK9WmfZuLK6v\n2Fxfb2rk61lfBy4BTomIbcDngFkAmbkqMx+PiBURsQXYD9zQzglrelgBKkndoe6zbmZe28CYm1sz\nHXUDK0AlqXt4eqTfsgJUkrqPQS3AClBJ6lYGdY+zAlSSuptB3cOsAJWk7mdQ96iNW3Zy95rN7Nl/\nmMUD87jpiiUsOOkNnZ6WJKmGQd1jDh4e4YEfbGHds7+2AlSSCsCg7iFWgEpS8RjUPeDIyFEeevJ5\n1q5/Afrgine/lZXveRuzZtb95WmSpA4zqEturArQxQPzOj0tSVKDDOqSsgJUksrBZ+0SsgJUksrD\noC6RSqXCExuG+IYVoJJUGgZ1Sbyy9xB3Pr6Jn1kBKkmlYlAXnBWgklRuBnWBWQEqSeVnUBeUFaCS\n1BsM6oIZXQE6c0YfVy87g8usAJWk0jKoC8QKUEnqPQZ1AVgBKkm9y6DuclaASlJvM6i71KtHj7Lm\nxy/w8FNWgEpSL/NZvwtZASpJeo1B3UWsAJUk1TKou4QVoJKksRjUHWYFqCRpIgZ1B72uAvTys7jk\nPCtAJUm/Y1B3iBWgkqRGGNTT7MChYxWg/7LRClBJUn0G9TTKbbtZ/eggO/dYASpJaoxBPQ2sAJUk\nTVVDQR0RlwNfAmYAqzPzr2uOLwMeBp6v3vRgZn6hhfMsLCtAJUnNqBvUETED+DLwfmAI+ElEPJKZ\nm2qGrsvMlW2YYyFZASpJaoVGUuNCYEtm/hIgIu4H/hSoDWo/DVX16x37+N//+Ay/GPoN8+fM5gYr\nQCVJU9RIUC8Eto26/iLwrpoxFeDiiNjIsbPuWzJzsDVTLI7XKkC/+cNfcOjwq1aASpKa1khQVxoY\n8wywKDOHI2I58B0gJvoD/f1zG7jb4vh/ew7wt/dvYEPuYM6Js/jUdUv5D0sXdnpabVO2/RutzGsD\n11d0rq/3NBLUQ8CiUdcXceys+rcyc++oy2si4u8j4g8yc9d4d7pjx97xDhVKpVJh/eB27vve7ypA\n/+d1F3D08Ehp1lirv3+uayso11dsrq83NRLUTwNnRsTpwK+BDwPXjh4QEacCL2dmJSIuBPomCumy\n2HfgCPeu/TlP11SAnjzvRH/YJEktUTeoM3MkIm4G1nLs61l3ZOamiPh49fgq4CrgExExAgwD17Rx\nzl3BClBJ0nRo6LtCmbkGWFNz26pRl28Dbmvt1LqTFaCSpOnkl3onwQpQSdJ0M6gbYAWoJKlTDOo6\nrACVJHWSQT0OK0AlSd3A1BnD9l3DrH50kF/82gpQSVJnGdSjvFYB+o0ntnD4yFErQCVJHWdQV72y\n9xB3Pr6Jn23dxRtPmMmNK5Zw4ZJTOz0tSVKP6/mgHqsC9PrlZ3PS3OM7PTVJkno7qMerAO3rs7xE\nktQdejaorQCVJBVBzwW1FaCSpCLpqaC2AlSSVDQ9EdRHRl7loSe3WgEqSSqc0ge1FaCSpCIrbVBb\nASpJKoNSppYVoJKksihVUFsBKkkqm9IEtRWgkqQyKnxQWwEqSSqzQge1FaCSpLIrbFBbASpJ6gWF\nC2orQCVJvaRQQW0FqCSp1xQiqK0AlST1qq4PaitAJUm9rGuD2gpQSZK6NKhrK0BvXLGEP7ICVJLU\ng7oqqK0AlSTp93VNUO/6zUHuWrPZClBJkkapG9QRcTnwJWAGsDoz/3qMMbcCy4Fh4PrM3NDoBKwA\nlSRpfBMGdUTMAL4MvB8YAn4SEY9k5qZRY1YAizPzzIh4F3A7cFEjD24FqCRJE6t3Rn0hsCUzfwkQ\nEfcDfwpsGjVmJXAPQGauj4j5EXFqZm6f6I6tAJUkqb56Qb0Q2Dbq+ovAuxoYMwCMG9Rf/uazrP3x\nr6wAlSSpjnpBXWnwfmpTdsI/t/bHv7ICVJKkBtQL6iFg0ajrizh2xjzRmIHqbeN69It/1gfwlc80\nNklJknpVvbLsp4EzI+L0iJgNfBh4pGbMI8BHACLiImB3vfenJUlSYyYM6swcAW4G1gKDwAOZuSki\nPh4RH6+OeRx4PiK2AKuA/97mOUuSJEmSJEmSJEmSJEmSWqytLSPt7gnvtHrri4hlwMPA89WbHszM\nL0zrJKcoIu4ErgBezsxzxxlTyL2rt7Yi7xtARCwC7gUWcKzT4KuZeesY44q6f3XXV+Q9jIgTgHXA\n8cBs4OHMfN2XWYu4f42srch795pq/fbTwIuZ+cExjk9q7+p9PWvKRvWEXw6cA1wbEUtqxvy2Jxz4\nGMd6wguhkfVVrcvMpdX/ivTDdhfH1jamIu8dddZWVdR9AzgCfDoz/5Bjvft/Xqa/ezSwvqpC7mFm\nHgQuzczzgT8GLo2I944eU9T9a2RtVYXcu1E+xbFvSr2u/Gsqe9e2oGZUT3hmHgFe6wkf7fd6woH5\nEVGU323ZyPqgza9atEtmPgm8MsGQwu5dA2uDgu4bQGa+lJnPVi/v41g3/2k1w4q8f42sD4q9h8PV\ni7M59ordrpohRd6/emuDAu9dRAwAK4DVjL2OSe9dO38fdVt6wrtII+urABdHxEaOtbXdkpmD0zS/\ndivy3tVTmn2LiNOBpcD6mkOl2L8J1lfoPYyI44BngDOA28eYe2H3r4G1FXrvgL8B/gJ40zjHJ713\n7TyjbktPeBdpZJ7PAIsy8zzg74DvtHdK066oe1dPKfYtIuYA3wI+VT3zrFXo/auzvkLvYWYerb48\nPAD8x+r7trUKuX8NrK2wexcRV3Lssy8bmPhVgUntXTuDui094V2k7voyc+9rL/Nk5hpgVkT8wfRN\nsa2KvHcTKsO+RcQs4EHgvswc64mu0PtXb31l2EOAzNwDPAa8o+ZQofcPxl9bwffuYmBlRGwFvg68\nLyLurRkz6b1rZ1CXvSe87voi4tSI6KtevhDoy8yx3o8poiLv3YSKvm/Vud8BDGbml8YZVtj9a2R9\nRd7DiDglIuZXL58IfACo/VRwIfevkbUVee8y87OZuSgz3wZcA/wgMz9SM2zSe9e296gzcyQiXusJ\nnwHc8VpPePX4qsx8PCJWVHvC9wM3tGs+rdbI+oCrgE9ExAjHPoZ/TccmPEkR8XXgEuCUiNgGfA6Y\nBcXfu3pro8D7VvUe4DrguYh47Unws8BboPj7RwPro9h7+Gbgnup7uccBX8vM75fkubPu2ij23tWq\nAJRk7yRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJkiT1gv8PZRRmBUAFJ4oAAAAASUVORK5CYII=\n",
"text": [
"<matplotlib.figure.Figure at 0x33f3ed0>"
]
}
],
"prompt_number": 5
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"matplotlib.rcParams['grid.color'] = 'r'\n",
"matplotlib.rcParams['grid.linewidth'] = 3\n",
"\n",
"plt.plot(range(5))"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 6,
"text": [
"[<matplotlib.lines.Line2D at 0x4f8a590>]"
]
},
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAeoAAAFXCAYAAABtOQ2RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XuQ1OWd7/H3AANjMgJGGaMMEQI+iFmjxoQYTQRzE9CQ\n1JZuYnaPUY5rEjVrksqe2li1m8op/9lLGTUaQ4ISjVsxKT1GD4HF3Y3ByzmyMRKS40C+xUq8QAK4\ngCDDbaDPH7RkMs5M90x3T/fv1+9XlVXd/XvoeR4f6A+/X3d/AEmSJEmSJEmSJEmSJEmSJEmSJEnS\nMLSUMyilNBp4Bng5Ij7Wz/HbgPlAN3BlRKyp6iwlSWpSo8ocdwPQBRT6HkgpLQBmRMSpwDXAndWb\nniRJza1kUKeUOoEFwBL6PwNfCNwDEBGrgYkppROrOUlJkppVOWfU3wD+Gjg8wPHJwEu97r8MdFY4\nL0mSRImgTildAmwtvuc82PvZfY+94RK5JEkaujEljp8HLCy+D90GjE8p3RsRV/QaswmY0ut+Z/Gx\nARUMcklSzj0/aRo3z/8iL5xwCstu/kRZH97uz6BBHRE3AjcCpJTmAF/pE9IAjwDXA/enlM4FdkbE\nluFOSJKkLDvUMooH3/On/OB9n6RndCvz165gWQXPV+qMuq8CQErpswARsTgilqeUFqSUNgB7gKvK\nfbJtW3cN8cc3vkkd44/edn3Zkue1gevLOteXDVu2d7NkWRf/uXkXE9vHctWCWXzw5k9wXQXPWXZQ\nR8QqYFXx9uI+x66vYA6SJGVaoVDgsTWb+NFjGzhw8DDvPf1E/vwjifZjWit+7qGeUUuSpF527N7P\n3cvX8dzG7by5bQyLFsxi9qzqfUvZoJYkaRgKhQKru7Zw36NB9/4eznj78Vw5/zSOO3ZcVX+OQS1J\n0hC9tvcg9678Dc+s38q41tFcMW8mc848mZaWYX+4e0AGtSRJQ7B2wyt8b8V6Xt1zgBmdE7j64ll0\nHPemmv08g1qSpDLs3d/DD3+6gcfXbmbM6BYumzudi2a/jVGjqn8W3ZtBLUlSCfHSTpYs6+KVV/fR\nOamdv/zY6UzpaB+Rn21QS5I0gIM9h3joiY2sXP0itMDF7zuFhedPo3VMuf/4ZOUMakmS+vHilt18\nd1kXm7btoWPiMVx9yenM6Jww4vMwqCVJ6uXQ4cOsePpFHn5yI4cOF7jw7MlcduF02sbWJzINakmS\nivqrAD3j7cfXdU4GtSSp6dWyArRSBrUkqanVugK0Uga1JKkpjVQFaKUMaklS0xnJCtBKGdSSpKYy\n0hWglTKoJUlNoV4VoJUyqCVJuVfPCtBKGdSSpNxqhArQShnUkqRcapQK0EoZ1JKkXGm0CtBKZXPW\nkiT1o3cF6IT2sSxqgArQShnUkqTMa+QK0EoZ1JKkTNu+ax9LV6xv2ArQShnUkqRMykoFaKUMaklS\n5mSpArRSBrUkKVOyVgFaKYNakpQJWa0ArZRBLUlqeFmuAK2UQS1Jalh5qACtlEEtSWpIeakArVTJ\noE4ptQGrgHHAWODhiPhqnzFzgYeB54sPPRgRN1V3qpKkZpC3CtBKlVx1ROxLKV0YEd0ppTHAkyml\n90fEk32GroqIhbWZpiSpGWyeeBL/cN+zuaoArVRZfz2JiO7izbHAaGB7P8Py/bE7SVLNFIDlZ85n\n6QWfYf/mXbmqAK1UWeGaUhoFPAtMB+6MiP/R5/gc4H8BLwObgK9ERNdAz1c4sieSJPFK+/Hc9tHr\nWTP1bNr37ebaf/s2H4in6j2tqmqp4GR2SL8wpTQBWAn8TUT8rNfjxwKHipfH5wO3RkQa6HkMaklS\nAVh12gV8+4PXsKetnXM2/oIvPHo7x+/ZUe+pVd2IBTVASulvgb0R8U+DjNkInBMR/V0iN6glqcnt\najuWb33oczw183zaDuxl0aqlzPv1o7l9D7WSoC7nU98nAD0RsTOldAzwEeDrfcacCGyNiEJKaTbQ\nMlBI97Zt665hTrtxTeoYf/S268uWPK8NXF/W5Wl9b6wAPZd33H750eNZX19fvfduOMr5MNlJwD3F\n96lHAd+PiH9PKX0WICIWA5cCn08p9QDdwKcqmpUkKXeatQK0UuV8PevXwLv6eXxxr9t3AHdUd2qS\npLxo5grQSjXnt8clSSPCCtDKGdSSpJqwArQ6DGpJUlVZAVpd/l+TJFXNlu3dLFnWZQVoFRnUkqSK\nFQoFHluziR89toEDBw9bAVpFBrUkqSLbd+1j6Yr1PLdxO29uG8OiBbOYPevEek8rNwxqSdKwFAoF\nVndt4b5Hg+79PZzx9uO5cv5pHHfsuHpPLVcMaknSkO3uPsD3Hw2eWb+Vca2jueKimcw562RaWiwv\nqTaDWpI0JG+sAJ1Fx3Fvqve0csugliSVpXcF6OhRLVw6dzrzrACtOYNaklSSFaD1Y1BLkgZkBWj9\nGdSSpH5ZAdoYDGpJ0h+xArSx+H9dknSUFaCNx6CWJFkB2sAMaklqctt37WPp8nU899sdVoA2IINa\nkpqUFaDZYFBLUhOyAjQ7DGpJajJWgGaLQS1JTcIK0GwyqCWpCVgBml0GtSTlmBWg2WdQS1JO9a0A\n/e+XzOLUzon1npaGyKCWpJzpWwE69+zJ/JkVoJnlrklSjlgBmj8GtSTlgBWg+WVQS1LGWQGabwa1\nJGWUFaDNYdCgTim1AauAccBY4OGI+Go/424D5gPdwJURsaYGc5UkFVkB2jwG/SJdROwDLoyIs4B3\nAhemlN7fe0xKaQEwIyJOBa4B7qzVZCVJRypA/+6u/+CZ9VuZ0TmBry96D3PPnmxI51TJb7xHRHfx\n5lhgNLC9z5CFwD3FsauBiSkl3xyRpCrrbm3j9g9fy60P/IrX9h7k0rnT+ZtPv8ue7pwr+R51SmkU\n8CwwHbgzIrr6DJkMvNTr/stAJ7ClWpOUpGb33OTT+cZFf8WWiW+1ArTJlAzqiDgMnJVSmgCsTCnN\njYif9RnW93pLoZwfPqljfFmTzCrXl115Xhu4viw5MLqVfz7v0zz0ZzfRUihw2eoHuPzp+2n9ak+9\np1Yzedq/aij7U98R8WpK6SfAu4Gf9Tq0CZjS635n8TFJUgWenzSNm+d/kRdOOIWTdv6OL/7LrZy+\neX29p6URVupT3ycAPRGxM6V0DPAR4Ot9hj0CXA/cn1I6F9gZEV72lqRhOtQyigff86f84H2fpGd0\nK/PXruCqx+/hmIP76j011cGgHxFMKZ3BkQ+KjSr+9/2I+MeU0mcBImJxcdztwDxgD3BVRDw72PMW\nipfGt23dVfECGk3vSzauL1vyvDZwfVkxUAVoXtY3kDyvb1LHeFpK5O1gBj2jjohfA+/q5/HFfe5f\nP9wJSJKsANXAbCaTpDqzAlSDMaglqU6sAFU5DGpJqgMrQFUug1qSRtjaDa/wvRXreXXPAWZ0TuDq\ni2fZLqYBGdSSNEL27u/hhz/dwONrNzN6VAuXzp3OvNlvY9Qoz6I1MINakkZAvLSTJcu6eOXVfVaA\nakgMakmqoYM9h3joiY2sXP0itMDF7zuFhedPo3VMyX8TSQIMakmqmRe37Oa7y7rYtG0PHROP4epL\nTmdG54R6T0sZY1BLUpUdOnyYFU+/yMNPbuTQ4QIXnj2Zyy6cTttYX3I1dP6ukaQqGqgCVBoug1qS\nqsAKUNWKQS1JFbICVLVkUEvSMFkBqpFgUEvSMLyhAnTeTOacaQWoqs+glqQhsgJUI8mglqQy9a4A\nHTO6hcvmTuciK0BVYwa1JJXBClDVi0EtSYOwAlT1ZlBL0gCsAFUjMKglqQ8rQNVI/F0nSb30rgCd\n2D6Wq6wAVZ0Z1JKEFaBqXAa1pKZnBagamUEtqWlZAaosMKglNSUrQJUVBrWkpmMFqLLEoJbUNKwA\nVRYZ1JKaghWgyiqDWlKuWQGqrCsZ1CmlKcC9QAdQAL4TEbf1GTMXeBh4vvjQgxFxU3WnKklDYwWo\n8qCcM+qDwJci4pcppXbgFymlf42IdX3GrYqIhdWfoiQNjRWgypOSv2sj4vfA74u3X0sprQNOBvoG\ntZ/GkFR3myeexD/c96wVoMqNIf31MqU0FTgbWN3nUAE4L6W0FtgEfCUiuqoyQ0kqQwFYfuZ8ll7w\nGfZv3mUFqHKj7LPg4mXvnwE3RcSP+xw7FjgUEd0ppfnArRGRBnquwpE/U5JUFa+0H8+tH/0Cv5x6\nFu37dnPtv32bD8RT9Z6WdFRLBVedy/qFKaVWYBmwIiJuKWP8RuCciNje33GDWlI1FIBVp13Atz94\nDXva2jln4y/4wqO3c/yeHfWemvRHKgnqcj713QLcBXQNFNIppROBrRFRSCnNBloGCmlJqoZX247l\nzg99jqdmnk/bgb1c96/f4qJfP+qHZZQ7JX9Pp5TeDzwO/Io/nAnfCLwNICIWp5SuAz4P9ADdwJcj\n4umBnvP1M+ptW3dVNPlGNKlj/NHbri9b8rw2yNf6+qsAfcfMtx49nvX19SdP+9efPK9vUsf42p5R\nR8STwKDNABFxB3DHcCchSeWwAlTNyC8VSsoEK0DVrAxqSQ3NClA1O4NaUsOyAlQyqCU1ICtApT/w\nd72khrJlezdLlnUdrQBdtGAWf2IFqJqYQS2pIRQKBR5bs4kfPbaBAwcPWwEqFRnUkupu+659LF2+\njud+u4M3t41h0YJZzJ51Yr2nJTUEg1pS3RQKBVZ3beG+R4Pu/T2c8fbjuXL+aRx37Lh6T01qGAa1\npLrY3X2A7z8aPLN+K+NaR3PFvJnMOfNkWlosL5F6M6gljbj+KkA7jntTvaclNSSDWtKIsQJUGjqD\nWtKIsAJUGh6DWlJNWQEqVcagllQzVoBKlTOoJVWdFaBS9finRlJVWQEqVZdBLakqrACVasOgllQx\nK0Cl2jGoJQ2bFaBS7RnUkobFClBpZBjUkobMClBp5BjUkspmBag08gxqSWWxAlSqD4Na0qCsAJXq\ny6CWNCArQKX6M6glvUF/FaB/duEMxo0dXe+pSU3HoJb0R6wAlRqLQS0JsAJUalQGtSQrQKUGZlBL\nTcwKUKnxlQzqlNIU4F6gAygA34mI2/oZdxswH+gGroyINVWeq6QqsgJUyoZyvgh5EPhSRLwDOBe4\nLqU0q/eAlNICYEZEnApcA9xZ9ZlKqpq1G17h7+76D55Zv5UZnRP4+qL3MPesyYa01IBKBnVE/D4i\nflm8/RqwDji5z7CFwD3FMauBiSkl3+CSGkx3axu3f/habn3gV+zZd5DL5k7nbz79Lnu6pQY2pPeo\nU0pTgbOB1X0OTQZe6nX/ZaAT2DLY803qGD+UH585ri+78ri25yafzjcu+iu2THwr07Zu5Mv/cgtT\n//GFek+rJvK4f725vuZSdlCnlNqBB4AbimfWffW9ZlaoZGKSquPA6Fb++bxP89C7P05LocBlqx/g\n8qfvp/VQT72nJqkMZQV1SqkVeBC4LyJ+3M+QTcCUXvc7i49JqqPnJ03j5vlf5IUTTuGknb/jSytu\nYdbvflPvaUkagnI+9d0C3AV0RcQtAwx7BLgeuD+ldC6wMyIGvewNsG3rrqHMNRN6X7JxfdmSp7X1\nVwF67VWfpK1nP5D99fUnT/vXH9eXXZVeyi/njPp84C+AX6WUXv/K1Y3A2wAiYnFELE8pLUgpbQD2\nAFdVNCtJwzZQBejrIS0pW0oGdUQ8SXmfDr++KjOSNCxWgEr5ZDOZlAPbd+1j6Yr1PLdxuxWgUs4Y\n1FKGWQEq5Z9BLWXUa3sPcu/K31gBKuWcQS1l0NoNr/C9Fet5dc8BZnRO4OqLZ9kuJuWUQS1lyN79\nPfzwpxt4fO1mxoxu4bK507lo9tsYNcqzaCmvDGopI+KlnSxZ1sUrr+6jc1I7f/mx05nS0V7vaUmq\nMYNaanAHew7x0BMbWbn6RWiBi993CgvPn0brmHL+8TtJWWdQSw3sxS27+e6yLjZt20PHxGO4+pLT\nmdE5od7TkjSCDGqpAfVXAXrZhdNpG+sfWanZ+KdeajADVYBKak4GtdQgrACV1B+DWmoAVoBKGohB\nLdWRFaCSSjGopTqxAlRSOQxqqQ6sAJVULoNaGkFWgEoaKoNaGiFWgEoaDoNaqjErQCVVwqCWasgK\nUEmVMqilGrACVFK1+KohVZkVoJKqyaCWqsQKUEm1YFBLVbBj937uXr7OClBJVWdQSxWwAlRSrRnU\n0jBZASppJBjU0jBYASpppBjU0hBYASpppBnUUpmsAJVUDwa1VIIVoJLqqWRQp5TuBi4GtkbEGf0c\nnws8DDxffOjBiLipmpOU6sUKUEn1Vs4Z9VLgm8C9g4xZFRELqzMlqf6sAJXUKEq+6kTEEymlqSWG\n+Uka5cbmiSfxD/c9awWopIZQjdODAnBeSmktsAn4SkR0VeF5pRFVAJafOZ+lF3yG/Zt3WQEqqSFU\nI6ifBaZERHdKaT7wYyCV8wsndYyvwo9vXK4vO/6r/S187U+/xpqpZ3Ps3l3csPKbfODmp+o9rZrJ\n0971x/VlW97XN1RlXbIuXvr+3/19mKyfsRuBcyJi+0BjCkdOXqS6KwCrTruAb3/wGva0tXPOxl/w\nhUdv5/g9O+o9NUk50lLBW8QVn1GnlE7kyCfCCyml2UDLYCEtNYpdbcfyrQ99jqdmnk/bgb1c96/f\n4qJfP+oHLiQ1lJKvSSmlHwBzgBOALcDXgFaAiFicUroO+DzQA3QDX46Ipwd7ztfPqLdt3VXR5BtR\n70s2rq9x9VcB+o6Zbz16PMtrG0he9m4gri/b8ry+SR3ja3tGHRGXlzh+B3DHcCcgjSQrQCVljV8K\nVdOwAlRSFhnUyr2DPYd56InnrQCVlEkGtXLNClBJWWdQK5esAJWUF75qKXe2bO9myU+6+M9NRypA\nr1owizOsAJWUUQa1cqNQKPDYmk386LENHDh42ApQSblgUCsXduzez93L1/Hcxu28uW0MixbMYvas\nE+s9LUmqmEGtTCsUCqxet4X7Vgbd+3s44+3Hc+X80zju2HH1npokVYVBrcx6be9Bvr/yN/x8/VbG\ntY7minkzmXPmybS0WF4iKT8MamVSfxWgHce9qd7TkqSqM6iVKfsOHKkAXfVLK0AlNQeDWpkRL+3k\nrp90sW2nFaCSmodBrYZnBaikZmZQq6FZASqp2RnUakhWgErSEb7qqeFYASpJf2BQq2FYASpJb2RQ\nqyFYASpJ/TOoVVdWgErS4Axq1Y0VoJJUmkGturACVJLKY1BrRFkBKklDY1BrxFgBKklDZ1Cr5qwA\nlaThM6hVU1aASlJlDGrVxKHDh/mX1S/y4yesAJWkSviqqarrXQE6oX0si6wAlaRhM6hVNYVCgZ+t\n2cQPrQCVpKoxqFUVO3bvZ+nydfw/K0AlqapKBnVK6W7gYmBrRJwxwJjbgPlAN3BlRKyp6izVsKwA\nlaTaKueMeinwTeDe/g6mlBYAMyLi1JTSe4E7gXOrN0U1qjdUgF40kzlnWQEqSdVU8ousEfEEsGOQ\nIQuBe4pjVwMTU0pe88y5Z6adw98uWc3P129lRucEvr7oPcw9e7IhLUlVVo33qCcDL/W6/zLQCWyp\nwnOrwextbeOuOVex8p0XMXrvQS6dO515VoBKUs1U68NkfV+lC+X8okkd46v04xtT3tb33MmzuPG/\n3cLvJ76Vqds28uUVtzDtn16o97RqIm9715fryzbX11yqEdSbgCm97ncWH1NOHBw9hvvO+3MeevfH\naSkUuPQ/HuDT//d+Wg/11HtqkpR71QjqR4DrgftTSucCOyPCy9458fykadw8/4u8cMIpnLTzd3xp\nxS3M+t1v6j0tSWoaJd9YTCn9AJgDnMCR952/BrQCRMTi4pjbgXnAHuCqiHh2sOcsFC+Nb9u6q5K5\nN6Tel2yyvL6BKkCndL7l6Jgsr68/edm7gbi+bHN92TWpYzwtZeTtQEqeUUfE5WWMuX64E1DjsQJU\nkhqHzWQ6ygpQSWo8BrUAK0AlqVEZ1E3OClBJamwGdROzAlSSGp9B3aTWbniF761Yz6t7DjCjcwJX\nXzyLjuPeVO9pSZL6MKibzL4DPfzwpxtY9cvNjB7VYgWoJDU4g7qJxEs7uesnXWzbuY/OSe385cdO\nZ0pHe72nJUkahEHdBA72HOahJ55n5eoXoQUuft8pLDx/Gq1jSv7jaZKkOjOoc+7FLbv57rIuNm3b\nQ8fEY7j6ktOZ0Tmh3tOSJJXJoM6pgSpA28a65ZKUJb5q55AVoJKUHwZ1jhQKBR5bs4kfWQEqSblh\nUOfEjt37uXv5Op6zAlSScsWgzjgrQCUp3wzqDLMCVJLyz6DOKCtAJak5GNQZ07sCdMzoFi6bO52L\nrACVpNwyqDPEClBJaj4GdQZYASpJzcugbnBWgEpSczOoG9Shw4dZ8fSLPPykFaCS1Mx81W9AVoBK\nkl5nUDcQK0AlSX0Z1A3CClBJUn8M6jqzAlSSNBiDuo7eUAE6byZzzrQCVJL0BwZ1nVgBKkkqh0E9\nwvbuP1IB+vhaK0AlSaUZ1CMoXtrJkmVdvPKqFaCSpPIY1CPAClBJ0nCVFdQppXnALcBoYElE/H2f\n43OBh4Hniw89GBE3VXGemWUFqCSpEiWDOqU0Grgd+DCwCfh5SumRiFjXZ+iqiFhYgzlm0qGWUSz7\nP7+1AlSSVJFyUmM2sCEifguQUrof+DjQN6j9NFTR5okn8Y15N7D+8eeZ2D6Wq6wAlSQNUzlBPRl4\nqdf9l4H39hlTAM5LKa3lyFn3VyKiq9QTT+oYX+48M6EA/OTM+Sy94DPsb23jgvWP87mffodj/+dr\n9Z5aTeRt/3rL89rA9WWd62su5QR1oYwxzwJTIqI7pTQf+DGQKppZxvxX+1u49aNfYM3Us2nft5sb\nVn6TD8RT9Z6WJCnjygnqTcCUXvencOSs+qiI2N3r9oqU0rdSSm+JiO3VmWbjKgCrTruAb3/wGva0\ntXPOxl/whUdv5/g9O+o9NUlSDpQT1M8Ap6aUpgKbgU8Cl/cekFI6EdgaEYWU0mygpZyQ3rZ119Bn\n3EBe23uQe1f+hmderwD90Awu/egnjr5Zn/X19af3Jam8rS/PawPXl3WuL7sqvZRfMqgjoieldD2w\nkiNfz7orItallD5bPL4YuBT4fEqpB+gGPlXRrDJgoApQP1EnSaqmsr4rFBErgBV9Hlvc6/YdwB3V\nnVpjsgJUkjSS/FLvEFgBKkkaaQZ1GawAlSTVi0FdghWgkqR6MqgHcOjwYVY8/aIVoJKkujJ1+rFl\nezdLlnXxn5t3WQEqSaorg7qXQqHAY2s28aPHNnDg4GHee/qJ/PlHEu3HtNZ7apKkJmVQF+3YvZ+7\nl6/juY3beXPbGBYtmMXsWSfWe1qSpCbX9EFdKBRY3bWF+x4Nuvf3cMbbj+fK+adx3LHj6j01SZKa\nO6jfUAE6byZzzjyZlhbLSyRJjaFpg3qgClBJkhpJ0wW1FaCSpCxpqqC2AlSSlDVNEdQHew7x0BMb\nrQCVJGVO7oPaClBJUpblNqitAJUk5UEuU8sKUElSXuQqqK0AlSTlTW6C2gpQSVIeZT6orQCVJOVZ\npoPaClBJUt5lNqitAJUkNYPMBbUVoJKkZpKpoLYCVJLUbDIR1FaASpKaVcMHtRWgkqRm1rBBbQWo\nJEkNGtR9K0AXLZjFn1gBKklqQg0V1FaASpL0xxomqLfv2sfSFeutAJUkqZeSQZ1SmgfcAowGlkTE\n3/cz5jZgPtANXBkRa8qdgBWgkiQNbNCgTimNBm4HPgxsAn6eUnokItb1GrMAmBERp6aU3gvcCZxb\nzg+3AlSSpMGV+iLybGBDRPw2Ig4C9wMf7zNmIXAPQESsBiamlEpes/75tHP42yWreWb9VmZ0TuDr\ni97D3LMmG9KSJPVS6tL3ZOClXvdfBt5bxphOYMtAT3r7h69l5Ts/yph9B60AlSRpEKWCulDm8/RN\n2UF/3cp3fpSp2zby5RW3MO0fXyjzR2TPpI7x9Z5CTeV5fXleG7i+rHN9zaVUUG8CpvS6P4UjZ8yD\njeksPjagZTd/ogWOvPktSZIGVuo96meAU1NKU1NKY4FPAo/0GfMIcAVASulcYGdEDHjZW5IklW/Q\noI6IHuB6YCXQBfwwItallD6bUvpsccxy4PmU0gZgMXBtjecsSZIkSZIkSZIkSZIkSaqymraM1Lon\nvN5KrS+lNBd4GHi++NCDEXHTiE5ymFJKdwMXA1sj4owBxmRy70qtLcv7BpBSmgLcC3RwpNPgOxFx\nWz/jsrp/JdeX5T1MKbUBq4BxwFjg4Yj4aj/jMrd/5awty3v3umL99jPAyxHxsX6OD2nvSn09a9h6\n9YTPA04HLk8pzeoz5mhPOHANR3rCM6Gc9RWtioizi/9l6TfbUo6srV9Z3jtKrK0oq/sGcBD4UkS8\ngyO9+9fl6c8eZayvKJN7GBH7gAsj4izgncCFKaX39x6T1f0rZ21Fmdy7Xm7gyDel3lD+NZy9q1lQ\nU8Oe8AZRzvqgxlctaiUingB2DDIks3tXxtogo/sGEBG/j4hfFm+/BqwDTu4zLMv7V876INt72F28\nOZYjV+y29xmS5f0rtTbI8N6llDqBBcAS+l/HkPeulv8edU16whtIOesrAOellNZypK3tKxHRNULz\nq7Us710pudm3lNJU4GxgdZ9Dudi/QdaX6T1MKY0CngWmA3f2M/fM7l8Za8v03gHfAP4aGKgHdch7\nV8sz6pr0hDeQcub5LDAlIs4Evgn8uLZTGnFZ3btScrFvKaV24AHghuKZZ1+Z3r8S68v0HkbE4eLl\n4U7gguL7tn1lcv/KWFtm9y6ldAlHPvuyhsGvCgxp72oZ1DXpCW8gJdcXEbtfv8wTESuA1pTSW0Zu\nijWV5b0bVB72LaXUCjwI3BcR/b3QZXr/Sq0vD3sIEBGvAj8B3t3nUKb3DwZeW8b37jxgYUppI/AD\n4IMppXv7jBny3tUyqPPeE15yfSmlE1NKLcXbs4GWiOjv/ZgsyvLeDSrr+1ac+11AV0TcMsCwzO5f\nOevL8h6mlE5IKU0s3j4G+AjQ91PBmdy/ctaW5b2LiBsjYkpETAM+Bfw0Iq7oM2zIe1ez96gjoiel\n9HpP+GiWVYq/AAAAl0lEQVTgrtd7wovHF0fE8pTSgmJP+B7gqlrNp9rKWR9wKfD5lFIPRz6G/6m6\nTXiIUko/AOYAJ6SUXgK+BrRC9veu1NrI8L4VnQ/8BfCrlNLrL4I3Am+D7O8fZayPbO/hScA9xfdy\nRwHfj4h/z8lrZ8m1ke2966sAkJO9kyRJkiRJkiRJkiRJkiRJkiRJkiRJkiRJktQM/j/RKjTU0TIZ\nMwAAAABJRU5ErkJggg==\n",
"text": [
"<matplotlib.figure.Figure at 0x4d6f9d0>"
]
}
],
"prompt_number": 6
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"seaborn.__version__"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "pyout",
"prompt_number": 7,
"text": [
"'0.4.dev'"
]
}
],
"prompt_number": 7
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"seaborn.reset_defaults()\n",
"plt.plot(range(5))\n",
"plt.grid(True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuUVfWd5/13FRSgCCIFKYRAgpofiB3FRMJKRFIalYuu\nFWI/0UnSakBM4yRpL8/4ZLJW95pMHte4XE5QxzZtJ7S3cdLR5+kYfYggiReUYByINOkW4dcoCi1a\nSpVcBLmf549zwKKs2z6XOpf9fq2V1Z5de3N+fnsLH/Y5e39AkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkuiX74EhhP/c2Nj4fGNj47DW1tanutmvubGx8VeNjY13NTY2\nXt3Y2LiztbV1bb7vK0mSpNpWn89BIYQpwHeAPwGZbvYbD/wGeBo4C7gTWBRCuDif95UkSVLt65/0\ngBDCCcDDwHzgb3rYfQHwWozx5tzrDSGEacCNwLKk7y1JkqTal88V1HuAxTHGZ4C6Hvb9IvC7DtuW\n5bZLkiRJH5MooIYQ/gMwGfhhblOXH+/nNAEtHba1AENDCAOTvLckSZLSodcf8YcQxgJ3ARfGGPfn\nNtfR81XUgmR6DsGSJEnqQzsGDeHvvrKA3084F4DFC+cUNQ8m+Q7q54GRwMshhCPb+gHnhRC+CwyM\nMXYMk+8AozpsawJ2xhj35bFeSZIkldGq8Z/n7ou+y/snDAegafs7RX+PJAH1d8CftXtdB9wPvArc\n1kk4BXgRmN1h20XAyiSLBGhdsYrM8Makh6VKXVsrjdOmHLPNuXXPmeXHuSXnzPLj3JJzZvlxbj37\ncP8hHnnpbZZvaDu6bcafnmLe8vv5hyK/V68DaozxA2Bd+20hhD1AW4xxXe71rcDoGOPVuV3uBb4X\nQriNbJi9APg6Hw+tPcoMbyQzYkTSw1LPuSXnzPLj3JJzZvlxbsk5s/w4t4/ELdtZtDiybcdeAE4c\nPIC500bzlYV/V5L3S/yYqQ4yHPsd0VHA2CMvYoxvhBAuAe4Arge2ANfEGH9b4PtKkiSpxA4cPMRj\nL2ziqZc2Hw1850z8BFfNmMCQ3TtK9r4FBdQY4/kdXs/tZJ/lwOcKeR9JkiT1rc0tu/j54nW89d5u\nAI4f2J+/mBGYenoTdXV1sLt0713oFVRJkiTVkEOHD7PkD5t5fMUmDh3OXjc9Y/xw5s0+nZOG9M1T\nQg2okiRJAqClbQ+LFq/jta07ARjQUM8V559G89ljsldN+4gBVZIkKeUymQzPrnmLR5/dyP4DhwE4\ndfRQ5l86iabhx/f5egyokiRJKda2cy/3P/kqr7zxPgD96uuYc954Zk4dR7/6RKWjRWNAlSRJSqFM\nJsNL61p4eFlkz76DAIwZOZhrL53EuKYhZV2bAVWSJClldu3Zz/9cFlm9/l0g2740c+o45px3Cg39\ny3PVtD0DqiRJUoqs3biNB5asZ8fu/QCMOHEQ8y+dRBg7rMwr+4gBVZIkKQU+3HeQR57ZyPNrtx7d\n9uXJo7n8/NM4bmBlRcLKWo0kSZKKLltVuu7YqtLZEznz1MqscjWgSpIk1ajuqkpPOK6hrGvrjgFV\nkiSpBvVYVVrBDKiSJEk1pBKqSgtlQJUkSaoRlVJVWigDqiRJUpWrtKrSQhlQJUmSqlglVpUWyoAq\nSZJUhSq5qrRQBlRJkqQqU+lVpYUyoEqSJFWRaqgqLZQBVZIkqQpUU1VpoWrr30aSJKkGVVtVaaEM\nqJIkSRWqWqtKC2VAlSRJqkDVXFVaKAOqJElSBamFqtJCGVAlSZIqRK1UlRbKgCpJklRmtVZVWigD\nqiRJUhnVYlVpoQyokiRJZVDLVaWFMqBKkiT1sVqvKi2UAVWSJKkPpaGqtFAGVEmSpD6QpqrSQjkN\nSZKkEktbVWmhDKiSJEklktaq0kIZUCVJkkogzVWlhTKgSpIkFZFVpYUzoEqSJBWJVaXFYUCVJEkq\nkFWlxWVAlSRJKkDbzr3cv2Q9r2xqA6wqLQYDqiRJUh6sKi0dA6okSVJCVpWWlgFVkiQpAatKS8+A\nKkmS1AtWlfYdpylJktQDq0r7VqKAGkK4DlgAfDq36RXgxzHGpV3s3ww802FzBjg5xvhuopVKkiT1\nMatKyyPpFdQtwA+AfyP7feBvA0+EEM6OMb7SzXGfAXa1e/1ewveVJEnqU5tbP+Rnj79mVWkZJAqo\nMcbFHTb9de6q6hfIXk3tyrYY446ki2uvrq21kMNTobMZObfuObP8OLfknFl+nFtyziw/7Wd0qK6e\nf5pyGb/49b9xKHfZ9IwxJ3DN9LGcNLg/tDpPKO15lXf8DyH0A74OLAImxxg3drJPM9mP+N8EBgL/\nCvwoxriyt++T4egVdUmSpJLaOuxkFs68ng2jJwIw8MBe5i1/gFl/Wpp/aEqBugIyZWcS3yQVQvgs\n8CLZwPkhcHln4TRnK/CXwGpgEDAfeC6EMDXGuCa/JUuSJBVXBnjyrFncP/1q9jUMAmDi1vXcuPQu\nRm9/u7yLS6HEaTeE0ACMBU4kewX1e0BzjPHlXh7/HLA5xnhVb/b3CqokSSqlbSc08j8u/h5rPn02\nAP0PHeCbK3/JZasfo1/mcJlXVx3KfgU1xngAeD33ck0IYQpwHXBtL3+JVcC5Sd9XkiSpmDLA8onT\nufeC77B70AkAfGrbm9y05E5OeW9TeReXcsV4Dmo/IEmn12SyH/0n0rpiFZnhjUkPS5W6tlYap005\nZptz654zy49zS86Z5ce5JefMeueDvQd56PdvsWpT9h7uOuCyVb/iWyt/QcOhg4Bz60ln51qxJH0O\n6q3Ak2QfNzUE+CYwHbil3c9Hxxivzr2+gezV1nV89B3UZuDipAvNDG8kM8KH4Sbl3JJzZvlxbsk5\ns/w4t+Sc2bGyVaUbj6kqvfa8MXxp4UPH7OfcyifpFdSRwEPAycAOYC0wI8Z45GH8o8h+P/WIBuAn\nwBhgT27/C2OMywtZtCRJUlLdVZUev2t7GVemjpI+B3V+Dz+f2+H17cDteaxLkiSpaHqsKt3VzcHq\nc8X4DqokSVJFsqq0OhlQJUlSTdrcsoufL15nVWkVMqBKkqSacujwYZb8YTOPr9jEocPZ66ZnjB/O\nvNmnc9KQgWVenXrDgCpJkmpGS9seFi1ex2tbdwIwoKGeK84/jeazx3jVtIoYUCVJUtXLZDI8u+Yt\nHn12I/sPZNufTh0zlPmXTKJp+PFlXp2SMqBKkqSq1rZzL/cvWc8rm9oA6Fdfx5zzxjNz6jj61Sfp\nElKlMKBKkqSqlMlkeGldCw8vi+zZl21/GjNyMNdeOolxTUPKvDoVwoAqSZKqzgcfHuChpzawev27\nQLaqdObUccw57xQa+nvVtNoZUCVJUlXJVpWuP6aqdP6lkwhjh5V5ZSoWA6okSaoK3VWVHjfQSFNL\n/P+mJEmqeD1WlaqmGFAlSVLFsqo0nQyokiSpIllVml4GVEmSVFGsKpUBVZIkVQyrSgUGVEmSVAGs\nKlV7BlRJklRWVpWqIwOqJEkqC6tK1RUDqiRJ6nNWlao7BlRJktSnrCpVTwyokiSpT1hVqt7ybJAk\nSSVnVamSMKBKkqSSsapU+TCgSpKkkrCqVPkyoEqSpKKyqlSFMqBKkqSisapUxWBAlSRJBeuyqvTS\nSTSdZFWpkjGgSpKkgry/ax/3PfmqVaUqGgOqJEnKi1WlKhUDqiRJSsyqUpWSAVWSJCViValKzYAq\nSZJ6xapS9RXPJkmS1COrStWXDKiSJKlLnVWVTpn4Ca60qlQlZECVJEmd6qyq9MoZE5g6qanMK1Ot\nM6BKkqRjWFWqcjOgSpKko6wqVSUwoEqSJKtKVVEMqJIkpZxVpao0BlRJklLKqlJVKgOqJEkpZFWp\nKpkBVZKklOlYVTpy2CCuucSqUlUOA6okSSnRWVVp8+TRXH7BaQwaYCRQ5ej12RhCuA5YAHw6t+kV\n4McxxqXdHNMMLAQmAVuAW2KMD+a7WEmSlB+rSlVNkvx1aQvwA+DfyH5V5dvAEyGEs2OMr3TcOYQw\nHvgN8FPgG8CFwKIQwtsxxmWFLlySJPVsf78GHn3pbZb+y3tWlapq9DqgxhgXd9j017mrql8gezW1\nowXAazHGm3OvN4QQpgE3AokDal1ba9JDUqezGTm37jmz/Di35JxZfpxbcu3n8/rI8SycdQNv/st7\nABw/oB9XnTuGqacOg907YHe5Vll5PNeSK+V88qqECCH0A74OLAImxxg3drLP88DqGONN7bbNBe6I\nMfb6W9gZjv6FT5Ik9cKhunr+acpl/OMXr+Bgv+xV0rPfWMP1y+6m8YO2Mq9Otaguz0zZlUTfiA4h\nfBZ4ERgIfAhc3lk4zWkCWjpsawGGhhAGxhj3JV2sJEnq3tZhJ7Nw5vVsGD0RgIEH9jJv+QPM+tPS\n4iYIqYSS3rK3HjgTOJHsFdRfhhCaY4wvF31lkiSp1zLAk2fN4v7pV7OvYRAAE7eu58aldzF6+9vl\nXZyUUKKAGmM8ALyee7kmhDAFuA64tpPd3wFGddjWBOz06qkkScXTesJw7rr4+6z59NkA9D90gG+u\n/EcuW/1r+mUOl3l1UnKFPvSsH9BV3cSLwOwO2y4CVubzRq0rVpEZ3pjPoalR19ZK47Qpx2xzbt1z\nZvlxbsk5s/w4t+5lMhn+8Np2Hl65lT37DwHwyaH9+b/+9gbGb3vj6H7OrGeea8l1NrNiSfIc1FuB\nJ8k+bmoI8E1gOnBLu5+PjjFenTvkXuB7IYTbgPuBC8h+LaBjaO2VzPBGMiN8VltSzi05Z5Yf55ac\nM8uPc8vqqqr0a5OGcvKP3jhmX2eWH+dWPkmuoI4EHgJOBnYAa4EZMcZncj8fBYw9snOM8Y0QwiXA\nHcD1ZIPtNTHG3xZj4ZIkpVV3VaV127aVeXVS4ZI8B3V+Dz+f28m25cDn8liXJEnqwKpSpYVnsyRJ\nVcCqUqWJAVWSpAp24OBhHnvhdZ56abNVpUoNA6okSRVqc8sufr54HW+9l+0kPX5gf66cMYGpk5rK\nvDKptAyokiRVmEOHD7PkD5t5fMUmDh3OXjc9Y/xw5s0+nZOGDCzz6qTSM6BKklRBWtr2sGjxOl7b\nuhOAAQ31XHH+aTSfPYa6OstKlQ4GVEmSKkAmk+HZNW/x6LMb2X8g2/506pihzL90Ek0nHV/m1Ul9\ny4AqSVKZvb9rH/c9+SqvbGoDoF99HXPOG8+sqZ+ivt6rpkofA6okSWWSyWR4aV0LDy+L7Nl3EIBP\njhzM/EsnMa5pSJlXJ5WPAVWSpDLoqqp0znmn0NC/vryLk8rMgCpJUh/rrqpUkgFVkqQ+Y1Wp1Dv+\n1yBJUh+wqlTqPQOqJEklZFWplJwBVZKkErGqVMqPAVWSpCKzqlQqjAFVkqQisqpUKpwBVZKkIrCq\nVCoeA6okSQWyqlQqLgOqJEl5sqpUKg0DqiRJebCqVCodA6okSQlZVSqVlgFVkqResqpU6hv+1yRJ\nUi9YVSr1HQOqJEndsKpU6nsGVEmSumBVqVQeBlRJkjqwqlQqLwOqJEntWFUqlZ8BVZIkrCqVKokB\nVZKUelaVSpXFgCpJSi2rSqXKZECVJKWSVaVS5TKgSpJSx6pSqbIZUCVJqWFVqVQd/K9RkpQKVpVK\n1cOAKkmqaVaVStXHgCpJqllWlUrVyYAqSao5VpVK1c2AKkmqKVaVStXPgCpJqglWlUq1w4AqSap6\nVpVKtcWAKkmqWlaVSrXJgCpJqkpWlUq1K1FADSH8ELgMmAB8CKwEfhBjjN0c0ww802FzBjg5xvhu\notVKkoRVpVKtS3oFdTpwN7AKaAD+G7AshDApxrinh2M/A+xq9/q9hO8tSUq5PQ2DeOCFf2f5hraj\n26wqlWpPov+aY4yz2r8OIXwbeBf4HLCih8O3xRh3JFpdO3Vtrfkemhqdzci5dc+Z5ce5JefM8tN+\nRq+MmcQdM/6Kllw4PfG4/syd/knOGjsUdm4v1xIrjudafpxbcqWcT0G3NoYQTgMi8GcxxnVd7NNM\n9iP+N4GBwL8CP4oxruzNe2Q42kwnSUqhA/368/CXvsVj53yVTF32u6XTNqzguqf/nqF7d/VwtKS+\nUFdgpuzk18tPCKEeeAIYGmOc3s1+AfgysBoYBMwHrgSmxhjX9PQ+BlRJSq/XR45n4awbeHPEpwAY\nvPcD/uPT9zJ9Q08f2knqS8UOqIV8YeceYBIwrbudcjdQtb+J6sUQwqnAjcBVBby/JKlGHaqr55+m\nXMY/fvEKDvZrAODsN9Zw/bK7afygrYejJVW7vAJqCOFvgdnA9Bjj1jx+iVXAufm8tySptm0ddjIL\nZ17PhtETARh4YC/zlj/ArD8tLe4lGkkVK+ljpurI3sX/VaA5xvhmnu87GUgUbFtXrCIzvDHPt0uH\nurZWGqdNOWabc+ueM8uPc0vOmfUsk8nw7KutPPK/32b/wey3u04bPoCb//sCRm9/5+h+zq17nmv5\ncW7JdTazYkl6BfUe4BtkA+ruEMKo3PbtMca9ACGEW4HRMcarc69vAF4H1vHRd1CbgYuTvHFmeCOZ\nESMSLlfOLTlnlh/nlpwz+0hXVaWzTx3MJ/76nWP2dW7JObP8OLfySRpQF5C9aem5Dtu/DTyU++dR\nwNh2P2sAfgKMAfYAa4ELY4zLE763JKnG9FRVWrdtW5lXKKkckj4HtcfuuBjj3A6vbwduT7guSVKN\ns6pUUles3ZAk9TmrSiV1x4AqSeozH+47yCPPbOT5tR/dJ2tVqaSO/N1AktQn4pbtLFq8jm079gJw\n4uABzJ09kTNP9SYUSccyoEqSSurAwcM89sLrPPXS5qPVgFMmfoIrZ0zghOMayro2SZXJgCpJKpnN\nLbv4+eJ1vPXebgCOH9ifK2dMYOqkpjKvTFIlM6BKkoru0OHDLPnDZh5fsYlDh7PXTc8YP5x5s0/n\npCEDy7w6SZXOgCpJKqqWtj0sWryO17buBGBAQz1XnH8azWePoa7OslJJPTOgSpKKIpPJ8Oyat3j0\n2Y3sP3AYgFPHDGX+pZNoOun4Mq9OUjUxoEqSCtZVVemsqZ+ivt6rppKSMaBKkvLWU1WpJOXDgCpJ\nyotVpZJKxYAqSUrMqlJJpWRAlST1mlWlkvqCv5tIknrFqlJJfcWAKknqllWlkvqaAVWS1CWrSiWV\ngwFVkvQxVpVKKicDqiTpGFaVSio3A6okCbCqVFLlMKBKkqwqlVRRDKiSlGJWlUqqRAZUSUopq0ol\nVSoDqiSlkFWlkiqZAVWSUsSqUknVwN+NJCklrCqVVC0MqJJU46wqlVRtDKiSVMOsKpVUjQyoklSD\nrCqVVM0MqJJUY6wqlVTtDKiSVCOsKpVUKwyoklQDrCqVVEsMqJJUxawqlVSLDKiSVKWsKpVUqwyo\nklSFrCqVVMsMqJJURawqlZQG/m4mSVXCqlJJaWFAlaQKZ1WppLQxoEpSBbOqVFIaGVAlqQJZVSop\nzQyoklRhrCqVlHYGVEmqEFaVSlKWAVWSKoBVpZL0kV4H1BDCD4HLgAnAh8BK4AcxxtjDcc3AQmAS\nsAW4Jcb4YL4LlqRaYlWpJH1cki686cDdwFTgIqABWBZC6PJzpxDCeOA3wNPAWcCdwKIQwsV5r1iS\nasQHew/yd4+/ws/+v3Xs2XeQOmDW1HH8zdVTDKeSUq3XV1BjjLPavw4hfBt4F/gcsKKLwxYAr8UY\nb8693hBCmAbcCCxLstC6ttYku6dSZzNybt1zZvlxbsl1nM+q8Z/nrv9nPTv2Zb9rOnLIAOZ/eSxh\n1GDY3laOJVYkz7XknFl+nFtypZxP3l9sCiGcBkTgz2KM67rY53lgdYzxpnbb5gJ3xBh7VRid4ehz\nqSWp6u1pGMR9X57HU2d+9EHSzLVLmff8Axx3YG8ZVyZJ+asrIFN2Jq+bpEII9WQ/rl/RVTjNaQJa\nOmxrAYaGEAbGGPfl8/6SVI1eGX06d868nneGjQLgpA/a+Kvf3sM5m/5Y5pVJUmXJ9y7+e8je9DSt\niGuRpJp0oF9/Hv7St3jsnK+Sqct+9X/ahhVc9/TfM3TvrjKvTpIqT+KAGkL4W2A2MD3GuLWH3d8B\nRnXY1gTs9OqppDR4feR4Fs66gTdHfAqAwXs/4Lqn/54vb3ihzCuTpMqV5DFTdWTv4v8q0BxjfLMX\nh71INsy2dxHZR1Ql0rpiFZnhjUkPS5W6tlYap005Zptz654zy49z69mhwxmW/Ok9fv1yy9Gq0rPf\nWMP1y+6m8YPsTVDOrGeea8k5s/w4t+Q6m1mxJLmCeg/wDbIBdXcI4ciV0e0xxr0AIYRbgdExxqtz\nP7sX+F4I4TbgfuAC4Ot8PLT2KDO8kcyIEUkPSz3nlpwzy49z+0hL2x4WPdmhqnTKyXx94Zxj7iJw\nZvlxbsk5s/w4t/JJElAXkL2j/rkO278NPJT751HA2CM/iDG+EUK4BLgDuJ7sg/qviTH+Ns/1SlLF\n6q6qdNShPcW9xVWSaliS56D2+FD/GOPcTrYtJ/usVEmqWT1WlW7bU+YVSlL1yPcufkkSVpVKUikY\nUCUpTx98eICHntrA6vXvAtmnVM+cOo45551CQ/8kTdKSpPYMqJKUh7Ubt/HAkvXs2L0fgJHDBnHN\nJZMIY3tVkidJ6oYBVZIS+HDfQR55ZiPPr/3oMdDNk0dz+QWnMWiAv6VKUjH4u6kk9VLcsp1Fi9ex\nbcdeAE4cPIC5sydy5qk+hkaSismAKkk9OHDwMI+98DpPvbSZTG7blImf4MoZEzjhuIayrk2SapEB\nVZK6sbllFz9fvI633tsNwPED+3PljAlMndRU5pVJUu0yoEpSJw4dPsySP2zm8RWbjlaVnjF+OPNm\nn85JQwaWeXWSVNsMqJLUQUvbHhYt7lBVev5pNJ89hro6+6AkqdQMqJKU011VadNJx5d5dZKUHgZU\nSaIXVaWSpD5jQJWUalaVSlLlMaBKSi2rSiWpMhlQJaWSVaWSVLkMqJJSxapSSap8/m4sKTWsKpWk\n6mBAlVTzrCqVpOpiQJVU06wqlaTqY0CVVJOsKpWk6mVAlVRzrCqVpOpmQJVUM6wqlaTaYECVVBOs\nKpWk2mFAlVTVrCqVpNpjQJVUtawqlaTaZECVVJWsKpWk2mVAlVRVrCqVpNrn7+aSqoZVpZKUDgZU\nSRXPqlJJShcDqqSKZlWpJKWPAVVSRbKqVJLSy4AqqeJYVSpJ6WZAlVQxrCqVJIEBVVKFsKpUknSE\nAVVSWVlVKknqyIAqqWysKpUkdcaAKqksrCqVJHXFgCqpT1lVKknqiX8aSOozVpVKknrDgCqp5Kwq\nlSQlYUCVVFJWlUqSkjKgSioJq0olSfkyoEoqOqtKJUmFSBRQQwjTgZuBzwEnA1+LMT7ezf7NwDMd\nNmeAk2OM7yZbqqRKZ1WpJKkYkl5BPR5YA/wD8Cs4er9DTz4D7Gr3+r2E7yupwr2/+wD/8PRaq0ol\nSQVLFFBjjEuBpQAhhCSHbosx7khyQEd1ba2FHJ4Knc3IuXXPmeWn/YwywPKJ0/m7/3c9ew5k/876\nyZMGcW3zWMY1HgfOE/Bcy5dzS86Z5ce5JVfK+eR9WSOEcBiYE2N8opt9msl+xP8mMBD4V+BHMcaV\nvX2fTO+v0krqYzsHDeGnX1nA7yecC0Bd5jCXrf4131r5CxoOHSzz6iRJfaWugEzZmVLfJLUV+Etg\nNTAImA88F0KYGmNcU+L3llRCq8Z/nrsv+i7vnzAcgFHb3+GGpXdxxtZXy7wySVK1K2lAjTFGILbb\n9GII4VTgRuCqUr63pNLY0zCI+748j6fOvPjotplrlzLv+Qc47sDeMq5MklQryvGYqVXAuWV4X0kF\nemXMJO6Y8Ve0DBsFwEkftPFXv72Hczb9scwrkyTVknIE1MlkP/pPpHXFKjLDG0uwnNpR19ZK47Qp\nx2xzbt1zZr1z4NBhHlvdwtJ/ee/ol8KnbVjBdU//PUP3Zh/Q4dy657mWH+eWnDPLj3NLrrOZFUvS\n56AOJvvIqCNOCSFMBlpjjFtCCLcCo2OMV+f2vwF4HVjHR99BbQYuJqHM8EYyI0YkPSz1nFtyzuxY\nnVWVXvWl0Vyy8L8fs59zS86Z5ce5JefM8uPcyifpFdQpfPTg/QywMPfPDwDzgFHA2Hb7NwA/AcYA\ne4C1wIUxxuV5rldSH+muqnT4vl09HC1JUv6SPgf1OaC+m5/P7fD6duD2vFYmqWx6rCo1oEqSSqgc\n30GVVKGsKpUkVQIDqiQA3t+1j/uefNWqUklS2RlQpZTLZDK8tK6Fh5dF9uzLtj99cuRg5l86iXFN\nQ8q8OklSGhlQpRT74MMDPPTUBlavfxfI9tTNnDqOOeedQkP/Lr9uLklSSRlQpZRau3EbDyxZz47d\n+wEYOWwQ11wyiTB2WJlXJklKOwOqlDIf7jvII89s5Pm1H/VlNE8ezeUXnMagAf6WIEkqP/80klIk\nbtnOosXr2LZjLwAnDh7A3NkTOfNUH0QtSaocBlQpBQ4cPMxjL7zOUy9tPlpVOmXiJ7hyxgROOK6h\nrGuTJKkjA6pU4zqrKr1yxgSmTmoq88okSeqcAVWqUd1VlZ40ZGCZVydJUtcMqFIN6rGqVJKkCmZA\nlWqIVaWSpFpgQJVqhFWlkqRaYUCVqpxVpZKkWmNAlaqYVaWSpFpkQJWqlFWlkqRaZUCVqoxVpZKk\nWuefZlIVsapUkpQGBlSpClhVKklKEwOqVOGsKpUkpY0BVapQVpVKktLKgCpVIKtKJUlpZkCVKohV\npZIkGVClimFVqSRJWQZUqcysKpUk6VgGVKmMrCqVJOnjDKhSmVhVKklS5wyoUh+zqlSSpO75p6HU\nh6wqlSSpZwZUqQ9YVSpJUu8ZUKUSs6pUkqRkDKhSiVhVKklSfgyoUglYVSpJUv4MqFIRWVUqSVLh\nDKhSkVhVKklScRhQpQJZVSpJUnEZUKUCWFUqSVLxGVClPFlVKklSaRhQpYSsKpUkqbT801RKwKpS\nSZJKz4Aq9YJVpZIk9R0DqtQDq0olSepbBlSpC1aVSpJUHokCaghhOnAz8DngZOBrMcbHezimGVgI\nTAK2ALcAXD9IAAAR30lEQVTEGB/Ma7VSH7GqVJKk8kl6BfV4YA3wD8Cv4OjX8ToVQhgP/Ab4KfAN\n4EJgUQjh7RjjsuTLlUorAzyzbhuPrHrHqlJJksokUUCNMS4FlgKEEHpzyALgtRjjzbnXG0II04Ab\ngUQBta6tNcnuqdTZjJxb99rPp/WE4dx18fdZszL7+Kh+9XV87fNNzPrsSOoP7YFte8q1zIrjuZac\nM8uPc0vOmeXHuSVXyvnk/VllCOEwMCfG+EQ3+zwPrI4x3tRu21zgjhhjr55mnunhKq1UqAywfOJ0\n7r3gO+wedAIAn37vDW5acifjt71R1rVJklQN6grIlJ0p9U1STUBLh20twNAQwsAY474Sv7/UrZ2D\nhvDTryzg9xPOBaAuc5jLVv+ab638BQ2HDpZ5dZIkpZN38Su1Vo3/PHdf9F3eP2E4AKO2v8MNS+/i\njK2vlnllkiSlW6kD6jvAqA7bmoCdXj1VuexpGMR9X57HU2defHTbzLVLmff8Axx3YG8ZVyZJkqD0\nAfVFYHaHbRcBK5P+Qq0rVpEZ3liURdWqurZWGqdNOWabcztWfGc3i5Zv4b1d+wE4cWA9N/zyv3LO\npj8e3ceZ9cxzLTlnlh/nlpwzy49zS66zmRVL0uegDgY+027TKSGEyUBrjHFLCOFWYHSM8ercz+8F\nvhdCuA24H7gA+DofD609ygxvJDPCvvOknFvWgYOHeOyFTR+rKr3qnBF8+tY/HrOvM8uPc0vOmeXH\nuSXnzPLj3Mon6RXUKcAzuX/OkH0AP8ADwDyyH+ePPbJzjPGNEMIlwB3A9WQf1H9NjPG3BaxZSqS7\nqtK6bdvKvDpJktRR0uegPgfUd/PzuZ1sW062eUrqU1aVSpJUnbyLXzXJqlJJkqqXAVU1JZPJ8Oya\nt3j02Y1WlUqSVKUMqKoZ7+/ax31Pvsorm9qAbFXpnPPGM2vqp6iv96qpJEnVwoCqqpfJZHhpXQsP\nL4vs2Zdtf/rkyMHMv3QS45qGlHl1kiQpKQOqqtoHHx7goac2sHr9u0C2CHjm1HHMOe8UGvp3eT+f\nJEmqYAZUVa21G7fxwJL17Nidfej+yGGDuOaSSYSxw8q8MkmSVAgDqqrOh/sO8sgzG3l+7daj25on\nj+byC05j0ABPaUmSqp1/mquqxC3bWbR4Hdt27AXgxMEDmDt7ImeeatOHJEm1woCqqtBVVemVMyZw\nwnENZV2bJEkqLgOqKl53VaWSJKn2GFBVsawqlSQpnQyoqkhWlUqSlF4GVFUUq0olSZIBVRXDqlJJ\nkgQGVFUAq0olSVJ7BlSVlVWlkiSpIwOqysaqUkmS1BkDqvqcVaWSJKk7pgH1KatKJUlSTwyo6hNW\nlUqSpN4yoKrkrCqVJElJGFBVMlaVSpKkfBhQVRJWlUqSpHwZUFVUVpVKkqRCGVBVNF1Vlc6cOo5+\n9T50X5Ik9Y4BVQXrrKp0zMjBXGtVqSRJyoMBVQWxqlSSJBWbAVV5s6pUkiSVggFViVlVKkmSSsk0\noUSsKpUkSaVmQFWvWFUqSZL6igFVPbKqVJIk9SUDqrpkVakkSSoHA6o6ZVWpJEkqFwOqjmFVqSRJ\nKjcDqo6yqlSSJFUCA6qsKpUkSRXFgJpyVpVKkqRKY0BNMatKJUlSJTKgppBVpZIkqZKZRlLGqlJJ\nklTpDKgpYVWpJEmqFokDagjhu8DNQBOwFvh+jHFVF/s2A8902JwBTo4xvpv0vZUfq0olSVI1SRRQ\nQwhXAD8B/hJ4CbgReCqEMCHG+F43h34G2NXudXf7qkgO1dWz+J/f5dcvt1hVKkmSqkbSK6g3AT+L\nMT4IEEJYAFwCzANu6+a4bTHGHfktMauurbWQw1Oh/Yy2DjuZhTOvZ8PqdwAY0L+OK74wmvNPH07d\nvl2wb1dXv0yqdHZeea71zLkl58zy49ySc2b5cW7JlXI+vS5VDyEMAHYDfx5jfKLd9geAYTHGOZ0c\n00z2I/43gYHAvwI/ijGu7O37Zjj6lUn1QgZ48qxZ3D/9avY1DAJg4tb13Lj0TkZvf6e8i5MkSTWp\nLkGm7I0kV1BHAP2Alg7b3wUmdnHMVrJfB1gNDALmA8+FEKbGGNckXKt60HrCcO66+Pus+fTZAPQ/\ndIBvrvwll61+jH6Zw2VenSRJUu+U9C7+GGMEYrtNL4YQTiX73dWrSvneaZIBlk+czr0XfIfdg04A\n4FPb3uSmJXdyynubyrs4SZKkhJIE1G3AIbJ377fXBLyd4NdZBZybYH91Y+egIfz0Kwv4/YTsSOsy\nh7ls9a/51spf0HDoYJlXJ0mSlFyvA2qMcX8I4Y/AhcATACGEeuArwP9I8J6TyX70n0jrilVkhjcm\nPaymrd28k/tf+Hd2fJgNoiOP78f/ed8POWPrq0f3cW7dq2trpXHalGO2ObOeObfknFl+nFtyziw/\nzi25zmZWLEk/4l8IPBhCWE32SugNwHHA/QAhhFuB0THGq3OvbwBeB9bx0XdQm4GLky40M7yRzAjb\njqDzqtIvTx7NFWeexNhbXj1mX+eWnDPLj3NLzpnlx7kl58zy49zKJ1FAjTE+GkIYCfwYGAWsAWa2\newbqKGBsu0MayD43dQywh+yD/S+MMS4vdOFp1V1Vad22bWVenSRJUuES3yQVY7wHuKeLn83t8Pp2\n4Pb8lqb2rCqVJElpUdK7+FUcVpVKkqQ0MaBWsEOHD7PkD5t5fMUmq0olSVJqGFArVEvbHhYtXsdr\nW3cCMKChnivOP43ms8dQV1fUsgZJkqSKYkCtMJlMhmfXvMWjz25k/4Fs+9OpY4Yy/9JJNJ10fJlX\nJ0mSVHoG1Ary/q593Pfkq7yyqQ2AfvV1zDlvPDOnjqNffX2ZVydJktQ3DKgVIJPJ8NK6Fh5eFtmz\nL/vQ/TEjB3PtpZMY1zSkzKuTJEnqWwbUMvvgwwM89NQGVq9/F4A6YObUccw57xQa+nvVVJIkpY8B\ntYzWbtzGA0vWs2P3fgBGnDiI+ZdOIowdVuaVSZIklY8BtQy6qiq9/PzTOG6g/y+RJEnpZhrqY91V\nlUqSJMmA2mesKpUkSeodA2ofsKpUkiSp9wyoJWRVqSRJUnIG1BKxqlSSJCk/BtQis6pUkiSpMAbU\nImrbuZf7l6y3qlSSJKkABtQisKpUkiSpeAyoBbKqVJIkqbgMqAWwqlSSJKn4DKh5sKpUkiSpdExT\nCVlVKkmSVFoG1F7qrKr0nImf4CqrSiVJkorKgNoLnVWV/sWMwNTTm3zoviRJUpEZULthVakkSVLf\nM6B2wapSSZKk8jCgdmBVqSRJUnkZUNuxqlSSJKn8DKhYVSpJklRJUh9QrSqVJEmqLKkOqFaVSpIk\nVZ5UBlSrSiVJkipX6tKYVaWSJEmVLTUB1apSSZKk6pCKgGpVqSRJUvWo6YBqVakkSVL1qdmAalWp\nJElSdaq5gGpVqSRJUnWrqYBqVakkSVL1q4mAalWpJElS7aj6gGpVqSRJUm2p6oBqVakkSVLtqcqA\nalWpJElS7Uqc5kII3wVuBpqAtcD3Y4yrutm/GVgITAK2ALfEGB/Ma7VYVSpJklTrEn1JM4RwBfAT\n4L8AZ5MNqE+FEEZ2sf944DfA08BZwJ3AohDCxUkXeuDgYR59diO3/a+Xj4bTcyZ+gv97/lTDqSRJ\nUg1JegX1JuBnR66AhhAWAJcA84DbOtl/AfBajPHm3OsNIYRpwI3Ast6+6esjx3P7r9bz7zuzd+gf\nP6AfV547mqmnDKNu9w7YnfDfokbVtbX2aps+4szy49ySc2b5cW7JObP8OLfkSjmfXlcqhRAGkI2C\nfx5jfKLd9geAYTHGOZ0c8zywOsZ4U7ttc4E7Yoy9upPpkS/8H5l//OIVHOzXAMDZb6zh+mV30/hB\nW2+XLkmSpBKqS5ApeyPJFdQRQD+gpcP2d4GJXRzT1Mn+LcDQEMLAGOO+nt70f077CwAGHtjLvOUP\nMOtPS4s7AUmSJFWUir/lffHCOUfz6D+VcyGSJEnqE0luktoGHCJ7VbS9JuDtLo55BxjVyf47e3P1\nVJIkSenT64AaY9wP/BG48Mi2EEI98BXgxS4OezH38/YuAlYmW6YkSZLSIulH/AuBB0MIq4FVwA3A\nccD9ACGEW4HRMcarc/vfC3wvhHBbbp8LgK8Ds4uwdkmSJNWgRM9BjTE+Cvwn4MfAGuBMYGaM8b3c\nLqOAse32f4PsY6guAv6Z7OOlrokx/rbglUuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmq\nFnU971JaIYTvAjeTrUBdC3w/xriqm/2byRYGTAK2ALfEGB/sg6VWlCRzy83smQ6bM8DJMcZ3S7nO\nShBCmE52Vp8DTga+FmN8vIdjmkn5eZZ0bmk/zwBCCD8ELgMmAB+Sbc37QYwx9nBcMyk+3/KZW9rP\ntxDCdcAC4NO5Ta8AP44xLu3mmGZSfJ5B8rml/TzrTAjhPwP/DbgrxnhjN/s1U8D5luhB/cUWQrgC\n+AnwX4CzyQatp0III7vYfzzwG+Bp4CzgTmBRCOHivllxZUg6t3Y+Q7ZMYRTZwPFe97vXjOPJFkt8\nN/c6093OnmdHJZpbO2k9zwCmA3cDU8kWlDQAy0IIx3d1gOcbkMfc2knr+bYF+AHZv0B+nmyIeiKE\ncEZnO3ueHZVobu2k9Tw7RghhCvAd4E9082dCMc63pFWnxXYT8LMjiTqEsIBs89Q84LZO9l8AvBZj\nvDn3ekMIYRrZhqplfbDeSpF0bkdsizHu6IP1VZTc34yXAoQQenOI5xl5ze2IVJ5nADHGWe1fhxC+\nDbxL9g/DFV0clvrzLc+5HZHK8y3GuLjDpr/OXR38Atmrgh2l/jyDvOZ2RCrPs/ZCCCcADwPzgb/p\nYfeCz7eyXUENIQwg+5vP745sizFmcq+/2MVhX2y/f86ybvavOXnO7Yh/DiFsDSEsCyF8qYTLrHap\nP88K5Hn2kWG5/9vWzT6ebx/Xm7kdkfrzLYTQL4TwH4CBwAtd7OZ51kEv53ZE6s8z4B5gcYzxGXr+\nimjB51s5P+IfAfQDWjpsf5fsJfTONHWyfwswNIQwsLjLq1j5zG0r8Jdkv+P152Q/4nguhHB2qRZZ\n5TzP8uN51k4IoZ7sx1orYozrutnV862dBHNL/fkWQvhsCOEDYC/wM+DyGOPGLnb3PMtJOLfUn2cA\nuSA/GfhhblNPX/kq+Hwr90f86gO5Gw3a32zwYgjhVLKX2q8qz6pUazzPPuYesjcHTCv3QqpMr+bm\n+QbAeuBM4ETg68AvQwjNMcaXy7usitfruXmeQQhhLHAXcGGMcX9ucx0lvtG+nAF1G3CIbMpurwl4\nu4tj3uHjVwmbgJ0xxn3FXV7FymdunVkFnFusRdUYz7PiSeV5FkL4W2A2MD3GuLWH3T3fchLOrTOp\nOt9ijAeA13Mv1+RuYLkOuLaT3T3PchLOrTOpOs/I3kw2Eni53f0I/YDzck8UGpj7qmF7BZ9vZfuI\nP5fC/whceGRb7qOdrwAvdnHYi7mft3cR2UeSpEKec+vMZLIfXejjUn+eFVGqzrMQQl0uZH0VuCDG\n+GYvDkv9+Zbn3DqTqvOtE/3o+s/11J9n3ehubp1J23n2O+DPyN6NfxbZf//VZG+YmtxJOIUinG/l\n/oh/IfBgCGE12b+R3AAcB9wPEEK4FRgdY7w6t/+9wPdCCLfl9rmA7OX52X298DJLNLcQwg1k/7a4\nDhhE9g68ZiAVjxcJIQwm+4iQI04JIUwGWmOMWzzPOpd0bmk/z3LuAb5BNmjtDiEcuYKwPca4F/x9\nrQuJ55b28y03jyfJfidyCPBNso/ruqXdzz3POkg6t7SfZwAxxg/I/vsfFULYA7Qd+Z54Kc63sj4H\nNcb4KPCfgB+Tfd7imcDMGOOR54uNAsa22/8Nso9Tugj4Z7LfAbkmxvjbPlx22SWdG9lnCv6E7HPL\nngM+S/a7JM/21ZrLbArwcu5/GbIB/2Xgv+Z+7nnWuURzw/MMso9WGUr2339ru/9d3m4fz7ePSzw3\nPN9GAg+R/T7l78h+DDsjd4c1eJ51JdHc8DzrSoZjb5TyfJMkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk1bz/H2q4VJC/o5HgAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x4fa2150>"
]
}
],
"prompt_number": 8
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"matplotlib.rcParams['grid.color'] = 'k'\n",
"matplotlib.rcParams['grid.linewidth'] = 3\n",
"\n",
"plt.plot(range(5))\n",
"plt.grid(True)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"metadata": {},
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAqgAAAHcCAYAAAAa41gWAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3XuUVfWd5/13FRSgCCIFKYRAgpofiB3FRMJKRFIalYuu\nFWI/0UnSakBM4yRpL8/4ZLJW95pMHte4XE5QxzZtJ7S3cdLR5+kYfYggiReUYByINOkW4dcoCi1a\nSpVcBLmf549zwKKs2z6XOpf9fq2V1Z5de3N+fnsLH/Y5e39AkiRJkiRJkiRJkiRJkiRJkiRJkiRJ\nkiRJkiRJkiRJkiRJkiRJkiRJkiRJkuiX74EhhP/c2Nj4fGNj47DW1tanutmvubGx8VeNjY13NTY2\nXt3Y2LiztbV1bb7vK0mSpNpWn89BIYQpwHeAPwGZbvYbD/wGeBo4C7gTWBRCuDif95UkSVLt65/0\ngBDCCcDDwHzgb3rYfQHwWozx5tzrDSGEacCNwLKk7y1JkqTal88V1HuAxTHGZ4C6Hvb9IvC7DtuW\n5bZLkiRJH5MooIYQ/gMwGfhhblOXH+/nNAEtHba1AENDCAOTvLckSZLSodcf8YcQxgJ3ARfGGPfn\nNtfR81XUgmR6DsGSJEnqQzsGDeHvvrKA3084F4DFC+cUNQ8m+Q7q54GRwMshhCPb+gHnhRC+CwyM\nMXYMk+8AozpsawJ2xhj35bFeSZIkldGq8Z/n7ou+y/snDAegafs7RX+PJAH1d8CftXtdB9wPvArc\n1kk4BXgRmN1h20XAyiSLBGhdsYrM8Makh6VKXVsrjdOmHLPNuXXPmeXHuSXnzPLj3JJzZvlxbj37\ncP8hHnnpbZZvaDu6bcafnmLe8vv5hyK/V68DaozxA2Bd+20hhD1AW4xxXe71rcDoGOPVuV3uBb4X\nQriNbJi9APg6Hw+tPcoMbyQzYkTSw1LPuSXnzPLj3JJzZvlxbsk5s/w4t4/ELdtZtDiybcdeAE4c\nPIC500bzlYV/V5L3S/yYqQ4yHPsd0VHA2CMvYoxvhBAuAe4Arge2ANfEGH9b4PtKkiSpxA4cPMRj\nL2ziqZc2Hw1850z8BFfNmMCQ3TtK9r4FBdQY4/kdXs/tZJ/lwOcKeR9JkiT1rc0tu/j54nW89d5u\nAI4f2J+/mBGYenoTdXV1sLt0713oFVRJkiTVkEOHD7PkD5t5fMUmDh3OXjc9Y/xw5s0+nZOG9M1T\nQg2okiRJAqClbQ+LFq/jta07ARjQUM8V559G89ljsldN+4gBVZIkKeUymQzPrnmLR5/dyP4DhwE4\ndfRQ5l86iabhx/f5egyokiRJKda2cy/3P/kqr7zxPgD96uuYc954Zk4dR7/6RKWjRWNAlSRJSqFM\nJsNL61p4eFlkz76DAIwZOZhrL53EuKYhZV2bAVWSJClldu3Zz/9cFlm9/l0g2740c+o45px3Cg39\ny3PVtD0DqiRJUoqs3biNB5asZ8fu/QCMOHEQ8y+dRBg7rMwr+4gBVZIkKQU+3HeQR57ZyPNrtx7d\n9uXJo7n8/NM4bmBlRcLKWo0kSZKKLltVuu7YqtLZEznz1MqscjWgSpIk1ajuqkpPOK6hrGvrjgFV\nkiSpBvVYVVrBDKiSJEk1pBKqSgtlQJUkSaoRlVJVWigDqiRJUpWrtKrSQhlQJUmSqlglVpUWyoAq\nSZJUhSq5qrRQBlRJkqQqU+lVpYUyoEqSJFWRaqgqLZQBVZIkqQpUU1VpoWrr30aSJKkGVVtVaaEM\nqJIkSRWqWqtKC2VAlSRJqkDVXFVaKAOqJElSBamFqtJCGVAlSZIqRK1UlRbKgCpJklRmtVZVWigD\nqiRJUhnVYlVpoQyokiRJZVDLVaWFMqBKkiT1sVqvKi2UAVWSJKkPpaGqtFAGVEmSpD6QpqrSQjkN\nSZKkEktbVWmhDKiSJEklktaq0kIZUCVJkkogzVWlhTKgSpIkFZFVpYUzoEqSJBWJVaXFYUCVJEkq\nkFWlxWVAlSRJKkDbzr3cv2Q9r2xqA6wqLQYDqiRJUh6sKi0dA6okSVJCVpWWlgFVkiQpAatKS8+A\nKkmS1AtWlfYdpylJktQDq0r7VqKAGkK4DlgAfDq36RXgxzHGpV3s3ww802FzBjg5xvhuopVKkiT1\nMatKyyPpFdQtwA+AfyP7feBvA0+EEM6OMb7SzXGfAXa1e/1ewveVJEnqU5tbP+Rnj79mVWkZJAqo\nMcbFHTb9de6q6hfIXk3tyrYY446ki2uvrq21kMNTobMZObfuObP8OLfknFl+nFtyziw/7Wd0qK6e\nf5pyGb/49b9xKHfZ9IwxJ3DN9LGcNLg/tDpPKO15lXf8DyH0A74OLAImxxg3drJPM9mP+N8EBgL/\nCvwoxriyt++T4egVdUmSpJLaOuxkFs68ng2jJwIw8MBe5i1/gFl/Wpp/aEqBugIyZWcS3yQVQvgs\n8CLZwPkhcHln4TRnK/CXwGpgEDAfeC6EMDXGuCa/JUuSJBVXBnjyrFncP/1q9jUMAmDi1vXcuPQu\nRm9/u7yLS6HEaTeE0ACMBU4kewX1e0BzjPHlXh7/HLA5xnhVb/b3CqokSSqlbSc08j8u/h5rPn02\nAP0PHeCbK3/JZasfo1/mcJlXVx3KfgU1xngAeD33ck0IYQpwHXBtL3+JVcC5Sd9XkiSpmDLA8onT\nufeC77B70AkAfGrbm9y05E5OeW9TeReXcsV4Dmo/IEmn12SyH/0n0rpiFZnhjUkPS5W6tlYap005\nZptz654zy49zS86Z5ce5JefMeueDvQd56PdvsWpT9h7uOuCyVb/iWyt/QcOhg4Bz60ln51qxJH0O\n6q3Ak2QfNzUE+CYwHbil3c9Hxxivzr2+gezV1nV89B3UZuDipAvNDG8kM8KH4Sbl3JJzZvlxbsk5\ns/w4t+Sc2bGyVaUbj6kqvfa8MXxp4UPH7OfcyifpFdSRwEPAycAOYC0wI8Z45GH8o8h+P/WIBuAn\nwBhgT27/C2OMywtZtCRJUlLdVZUev2t7GVemjpI+B3V+Dz+f2+H17cDteaxLkiSpaHqsKt3VzcHq\nc8X4DqokSVJFsqq0OhlQJUlSTdrcsoufL15nVWkVMqBKkqSacujwYZb8YTOPr9jEocPZ66ZnjB/O\nvNmnc9KQgWVenXrDgCpJkmpGS9seFi1ex2tbdwIwoKGeK84/jeazx3jVtIoYUCVJUtXLZDI8u+Yt\nHn12I/sPZNufTh0zlPmXTKJp+PFlXp2SMqBKkqSq1rZzL/cvWc8rm9oA6Fdfx5zzxjNz6jj61Sfp\nElKlMKBKkqSqlMlkeGldCw8vi+zZl21/GjNyMNdeOolxTUPKvDoVwoAqSZKqzgcfHuChpzawev27\nQLaqdObUccw57xQa+nvVtNoZUCVJUlXJVpWuP6aqdP6lkwhjh5V5ZSoWA6okSaoK3VWVHjfQSFNL\n/P+mJEmqeD1WlaqmGFAlSVLFsqo0nQyokiSpIllVml4GVEmSVFGsKpUBVZIkVQyrSgUGVEmSVAGs\nKlV7BlRJklRWVpWqIwOqJEkqC6tK1RUDqiRJ6nNWlao7BlRJktSnrCpVTwyokiSpT1hVqt7ybJAk\nSSVnVamSMKBKkqSSsapU+TCgSpKkkrCqVPkyoEqSpKKyqlSFMqBKkqSisapUxWBAlSRJBeuyqvTS\nSTSdZFWpkjGgSpKkgry/ax/3PfmqVaUqGgOqJEnKi1WlKhUDqiRJSsyqUpWSAVWSJCViValKzYAq\nSZJ6xapS9RXPJkmS1COrStWXDKiSJKlLnVWVTpn4Ca60qlQlZECVJEmd6qyq9MoZE5g6qanMK1Ot\nM6BKkqRjWFWqcjOgSpKko6wqVSUwoEqSJKtKVVEMqJIkpZxVpao0BlRJklLKqlJVKgOqJEkpZFWp\nKpkBVZKklOlYVTpy2CCuucSqUlUOA6okSSnRWVVp8+TRXH7BaQwaYCRQ5ej12RhCuA5YAHw6t+kV\n4McxxqXdHNMMLAQmAVuAW2KMD+a7WEmSlB+rSlVNkvx1aQvwA+DfyH5V5dvAEyGEs2OMr3TcOYQw\nHvgN8FPgG8CFwKIQwtsxxmWFLlySJPVsf78GHn3pbZb+y3tWlapq9DqgxhgXd9j017mrql8gezW1\nowXAazHGm3OvN4QQpgE3AokDal1ba9JDUqezGTm37jmz/Di35JxZfpxbcu3n8/rI8SycdQNv/st7\nABw/oB9XnTuGqacOg907YHe5Vll5PNeSK+V88qqECCH0A74OLAImxxg3drLP88DqGONN7bbNBe6I\nMfb6W9gZjv6FT5Ik9cKhunr+acpl/OMXr+Bgv+xV0rPfWMP1y+6m8YO2Mq9Otaguz0zZlUTfiA4h\nfBZ4ERgIfAhc3lk4zWkCWjpsawGGhhAGxhj3JV2sJEnq3tZhJ7Nw5vVsGD0RgIEH9jJv+QPM+tPS\n4iYIqYSS3rK3HjgTOJHsFdRfhhCaY4wvF31lkiSp1zLAk2fN4v7pV7OvYRAAE7eu58aldzF6+9vl\nXZyUUKKAGmM8ALyee7kmhDAFuA64tpPd3wFGddjWBOz06qkkScXTesJw7rr4+6z59NkA9D90gG+u\n/EcuW/1r+mUOl3l1UnKFPvSsH9BV3cSLwOwO2y4CVubzRq0rVpEZ3pjPoalR19ZK47Qpx2xzbt1z\nZvlxbsk5s/w4t+5lMhn+8Np2Hl65lT37DwHwyaH9+b/+9gbGb3vj6H7OrGeea8l1NrNiSfIc1FuB\nJ8k+bmoI8E1gOnBLu5+PjjFenTvkXuB7IYTbgPuBC8h+LaBjaO2VzPBGMiN8VltSzi05Z5Yf55ac\nM8uPc8vqqqr0a5OGcvKP3jhmX2eWH+dWPkmuoI4EHgJOBnYAa4EZMcZncj8fBYw9snOM8Y0QwiXA\nHcD1ZIPtNTHG3xZj4ZIkpVV3VaV127aVeXVS4ZI8B3V+Dz+f28m25cDn8liXJEnqwKpSpYVnsyRJ\nVcCqUqWJAVWSpAp24OBhHnvhdZ56abNVpUoNA6okSRVqc8sufr54HW+9l+0kPX5gf66cMYGpk5rK\nvDKptAyokiRVmEOHD7PkD5t5fMUmDh3OXjc9Y/xw5s0+nZOGDCzz6qTSM6BKklRBWtr2sGjxOl7b\nuhOAAQ31XHH+aTSfPYa6OstKlQ4GVEmSKkAmk+HZNW/x6LMb2X8g2/506pihzL90Ek0nHV/m1Ul9\ny4AqSVKZvb9rH/c9+SqvbGoDoF99HXPOG8+sqZ+ivt6rpkofA6okSWWSyWR4aV0LDy+L7Nl3EIBP\njhzM/EsnMa5pSJlXJ5WPAVWSpDLoqqp0znmn0NC/vryLk8rMgCpJUh/rrqpUkgFVkqQ+Y1Wp1Dv+\n1yBJUh+wqlTqPQOqJEklZFWplJwBVZKkErGqVMqPAVWSpCKzqlQqjAFVkqQisqpUKpwBVZKkIrCq\nVCoeA6okSQWyqlQqLgOqJEl5sqpUKg0DqiRJebCqVCodA6okSQlZVSqVlgFVkqResqpU6hv+1yRJ\nUi9YVSr1HQOqJEndsKpU6nsGVEmSumBVqVQeBlRJkjqwqlQqLwOqJEntWFUqlZ8BVZIkrCqVKokB\nVZKUelaVSpXFgCpJSi2rSqXKZECVJKWSVaVS5TKgSpJSx6pSqbIZUCVJqWFVqVQd/K9RkpQKVpVK\n1cOAKkmqaVaVStXHgCpJqllWlUrVyYAqSao5VpVK1c2AKkmqKVaVStXPgCpJqglWlUq1w4AqSap6\nVpVKtcWAKkmqWlaVSrXJgCpJqkpWlUq1K1FADSH8ELgMmAB8CKwEfhBjjN0c0ww802FzBjg5xvhu\notVKkoRVpVKtS3oFdTpwN7AKaAD+G7AshDApxrinh2M/A+xq9/q9hO8tSUq5PQ2DeOCFf2f5hraj\n26wqlWpPov+aY4yz2r8OIXwbeBf4HLCih8O3xRh3JFpdO3Vtrfkemhqdzci5dc+Z5ce5JefM8tN+\nRq+MmcQdM/6Kllw4PfG4/syd/knOGjsUdm4v1xIrjudafpxbcqWcT0G3NoYQTgMi8GcxxnVd7NNM\n9iP+N4GBwL8CP4oxruzNe2Q42kwnSUqhA/368/CXvsVj53yVTF32u6XTNqzguqf/nqF7d/VwtKS+\nUFdgpuzk18tPCKEeeAIYGmOc3s1+AfgysBoYBMwHrgSmxhjX9PQ+BlRJSq/XR45n4awbeHPEpwAY\nvPcD/uPT9zJ9Q08f2knqS8UOqIV8YeceYBIwrbudcjdQtb+J6sUQwqnAjcBVBby/JKlGHaqr55+m\nXMY/fvEKDvZrAODsN9Zw/bK7afygrYejJVW7vAJqCOFvgdnA9Bjj1jx+iVXAufm8tySptm0ddjIL\nZ17PhtETARh4YC/zlj/ArD8tLe4lGkkVK+ljpurI3sX/VaA5xvhmnu87GUgUbFtXrCIzvDHPt0uH\nurZWGqdNOWabc+ueM8uPc0vOmfUsk8nw7KutPPK/32b/wey3u04bPoCb//sCRm9/5+h+zq17nmv5\ncW7JdTazYkl6BfUe4BtkA+ruEMKo3PbtMca9ACGEW4HRMcarc69vAF4H1vHRd1CbgYuTvHFmeCOZ\nESMSLlfOLTlnlh/nlpwz+0hXVaWzTx3MJ/76nWP2dW7JObP8OLfySRpQF5C9aem5Dtu/DTyU++dR\nwNh2P2sAfgKMAfYAa4ELY4zLE763JKnG9FRVWrdtW5lXKKkckj4HtcfuuBjj3A6vbwduT7guSVKN\ns6pUUles3ZAk9TmrSiV1x4AqSeozH+47yCPPbOT5tR/dJ2tVqaSO/N1AktQn4pbtLFq8jm079gJw\n4uABzJ09kTNP9SYUSccyoEqSSurAwcM89sLrPPXS5qPVgFMmfoIrZ0zghOMayro2SZXJgCpJKpnN\nLbv4+eJ1vPXebgCOH9ifK2dMYOqkpjKvTFIlM6BKkoru0OHDLPnDZh5fsYlDh7PXTc8YP5x5s0/n\npCEDy7w6SZXOgCpJKqqWtj0sWryO17buBGBAQz1XnH8azWePoa7OslJJPTOgSpKKIpPJ8Oyat3j0\n2Y3sP3AYgFPHDGX+pZNoOun4Mq9OUjUxoEqSCtZVVemsqZ+ivt6rppKSMaBKkvLWU1WpJOXDgCpJ\nyotVpZJKxYAqSUrMqlJJpWRAlST1mlWlkvqCv5tIknrFqlJJfcWAKknqllWlkvqaAVWS1CWrSiWV\ngwFVkvQxVpVKKicDqiTpGFaVSio3A6okCbCqVFLlMKBKkqwqlVRRDKiSlGJWlUqqRAZUSUopq0ol\nVSoDqiSlkFWlkiqZAVWSUsSqUknVwN+NJCklrCqVVC0MqJJU46wqlVRtDKiSVMOsKpVUjQyoklSD\nrCqVVM0MqJJUY6wqlVTtDKiSVCOsKpVUKwyoklQDrCqVVEsMqJJUxawqlVSLDKiSVKWsKpVUqwyo\nklSFrCqVVMsMqJJURawqlZQG/m4mSVXCqlJJaWFAlaQKZ1WppLQxoEpSBbOqVFIaGVAlqQJZVSop\nzQyoklRhrCqVlHYGVEmqEFaVSlKWAVWSKoBVpZL0kV4H1BDCD4HLgAnAh8BK4AcxxtjDcc3AQmAS\nsAW4Jcb4YL4LlqRaYlWpJH1cki686cDdwFTgIqABWBZC6PJzpxDCeOA3wNPAWcCdwKIQwsV5r1iS\nasQHew/yd4+/ws/+v3Xs2XeQOmDW1HH8zdVTDKeSUq3XV1BjjLPavw4hfBt4F/gcsKKLwxYAr8UY\nb8693hBCmAbcCCxLstC6ttYku6dSZzNybt1zZvlxbsl1nM+q8Z/nrv9nPTv2Zb9rOnLIAOZ/eSxh\n1GDY3laOJVYkz7XknFl+nFtypZxP3l9sCiGcBkTgz2KM67rY53lgdYzxpnbb5gJ3xBh7VRid4ehz\nqSWp6u1pGMR9X57HU2d+9EHSzLVLmff8Axx3YG8ZVyZJ+asrIFN2Jq+bpEII9WQ/rl/RVTjNaQJa\nOmxrAYaGEAbGGPfl8/6SVI1eGX06d868nneGjQLgpA/a+Kvf3sM5m/5Y5pVJUmXJ9y7+e8je9DSt\niGuRpJp0oF9/Hv7St3jsnK+Sqct+9X/ahhVc9/TfM3TvrjKvTpIqT+KAGkL4W2A2MD3GuLWH3d8B\nRnXY1gTs9OqppDR4feR4Fs66gTdHfAqAwXs/4Lqn/54vb3ihzCuTpMqV5DFTdWTv4v8q0BxjfLMX\nh71INsy2dxHZR1Ql0rpiFZnhjUkPS5W6tlYap005Zptz654zy49z69mhwxmW/Ok9fv1yy9Gq0rPf\nWMP1y+6m8YPsTVDOrGeea8k5s/w4t+Q6m1mxJLmCeg/wDbIBdXcI4ciV0e0xxr0AIYRbgdExxqtz\nP7sX+F4I4TbgfuAC4Ot8PLT2KDO8kcyIEUkPSz3nlpwzy49z+0hL2x4WPdmhqnTKyXx94Zxj7iJw\nZvlxbsk5s/w4t/JJElAXkL2j/rkO278NPJT751HA2CM/iDG+EUK4BLgDuJ7sg/qviTH+Ns/1SlLF\n6q6qdNShPcW9xVWSaliS56D2+FD/GOPcTrYtJ/usVEmqWT1WlW7bU+YVSlL1yPcufkkSVpVKUikY\nUCUpTx98eICHntrA6vXvAtmnVM+cOo45551CQ/8kTdKSpPYMqJKUh7Ubt/HAkvXs2L0fgJHDBnHN\nJZMIY3tVkidJ6oYBVZIS+HDfQR55ZiPPr/3oMdDNk0dz+QWnMWiAv6VKUjH4u6kk9VLcsp1Fi9ex\nbcdeAE4cPIC5sydy5qk+hkaSismAKkk9OHDwMI+98DpPvbSZTG7blImf4MoZEzjhuIayrk2SapEB\nVZK6sbllFz9fvI633tsNwPED+3PljAlMndRU5pVJUu0yoEpSJw4dPsySP2zm8RWbjlaVnjF+OPNm\nn85JQwaWeXWSVNsMqJLUQUvbHhYt7lBVev5pNJ89hro6+6AkqdQMqJKU011VadNJx5d5dZKUHgZU\nSaIXVaWSpD5jQJWUalaVSlLlMaBKSi2rSiWpMhlQJaWSVaWSVLkMqJJSxapSSap8/m4sKTWsKpWk\n6mBAlVTzrCqVpOpiQJVU06wqlaTqY0CVVJOsKpWk6mVAlVRzrCqVpOpmQJVUM6wqlaTaYECVVBOs\nKpWk2mFAlVTVrCqVpNpjQJVUtawqlaTaZECVVJWsKpWk2mVAlVRVrCqVpNrn7+aSqoZVpZKUDgZU\nSRXPqlJJShcDqqSKZlWpJKWPAVVSRbKqVJLSy4AqqeJYVSpJ6WZAlVQxrCqVJIEBVVKFsKpUknSE\nAVVSWVlVKknqyIAqqWysKpUkdcaAKqksrCqVJHXFgCqpT1lVKknqiX8aSOozVpVKknrDgCqp5Kwq\nlSQlYUCVVFJWlUqSkjKgSioJq0olSfkyoEoqOqtKJUmFSBRQQwjTgZuBzwEnA1+LMT7ezf7NwDMd\nNmeAk2OM7yZbqqRKZ1WpJKkYkl5BPR5YA/wD8Cs4er9DTz4D7Gr3+r2E7yupwr2/+wD/8PRaq0ol\nSQVLFFBjjEuBpQAhhCSHbosx7khyQEd1ba2FHJ4Knc3IuXXPmeWn/YwywPKJ0/m7/3c9ew5k/876\nyZMGcW3zWMY1HgfOE/Bcy5dzS86Z5ce5JVfK+eR9WSOEcBiYE2N8opt9msl+xP8mMBD4V+BHMcaV\nvX2fTO+v0krqYzsHDeGnX1nA7yecC0Bd5jCXrf4131r5CxoOHSzz6iRJfaWugEzZmVLfJLUV+Etg\nNTAImA88F0KYGmNcU+L3llRCq8Z/nrsv+i7vnzAcgFHb3+GGpXdxxtZXy7wySVK1K2lAjTFGILbb\n9GII4VTgRuCqUr63pNLY0zCI+748j6fOvPjotplrlzLv+Qc47sDeMq5MklQryvGYqVXAuWV4X0kF\nemXMJO6Y8Ve0DBsFwEkftPFXv72Hczb9scwrkyTVknIE1MlkP/pPpHXFKjLDG0uwnNpR19ZK47Qp\nx2xzbt1zZr1z4NBhHlvdwtJ/ee/ol8KnbVjBdU//PUP3Zh/Q4dy657mWH+eWnDPLj3NLrrOZFUvS\n56AOJvvIqCNOCSFMBlpjjFtCCLcCo2OMV+f2vwF4HVjHR99BbQYuJqHM8EYyI0YkPSz1nFtyzuxY\nnVWVXvWl0Vyy8L8fs59zS86Z5ce5JefM8uPcyifpFdQpfPTg/QywMPfPDwDzgFHA2Hb7NwA/AcYA\ne4C1wIUxxuV5rldSH+muqnT4vl09HC1JUv6SPgf1OaC+m5/P7fD6duD2vFYmqWx6rCo1oEqSSqgc\n30GVVKGsKpUkVQIDqiQA3t+1j/uefNWqUklS2RlQpZTLZDK8tK6Fh5dF9uzLtj99cuRg5l86iXFN\nQ8q8OklSGhlQpRT74MMDPPTUBlavfxfI9tTNnDqOOeedQkP/Lr9uLklSSRlQpZRau3EbDyxZz47d\n+wEYOWwQ11wyiTB2WJlXJklKOwOqlDIf7jvII89s5Pm1H/VlNE8ezeUXnMagAf6WIEkqP/80klIk\nbtnOosXr2LZjLwAnDh7A3NkTOfNUH0QtSaocBlQpBQ4cPMxjL7zOUy9tPlpVOmXiJ7hyxgROOK6h\nrGuTJKkjA6pU4zqrKr1yxgSmTmoq88okSeqcAVWqUd1VlZ40ZGCZVydJUtcMqFIN6rGqVJKkCmZA\nlWqIVaWSpFpgQJVqhFWlkqRaYUCVqpxVpZKkWmNAlaqYVaWSpFpkQJWqlFWlkqRaZUCVqoxVpZKk\nWuefZlIVsapUkpQGBlSpClhVKklKEwOqVOGsKpUkpY0BVapQVpVKktLKgCpVIKtKJUlpZkCVKohV\npZIkGVClimFVqSRJWQZUqcysKpUk6VgGVKmMrCqVJOnjDKhSmVhVKklS5wyoUh+zqlSSpO75p6HU\nh6wqlSSpZwZUqQ9YVSpJUu8ZUKUSs6pUkqRkDKhSiVhVKklSfgyoUglYVSpJUv4MqFIRWVUqSVLh\nDKhSkVhVKklScRhQpQJZVSpJUnEZUKUCWFUqSVLxGVClPFlVKklSaRhQpYSsKpUkqbT801RKwKpS\nSZJKz4Aq9YJVpZIk9R0DqtQDq0olSepbBlSpC1aVSpJUHokCaghhOnAz8DngZOBrMcbHezimGVgI\nTAK2ALcAXD9IAAAR30lEQVTEGB/Ma7VSH7GqVJKk8kl6BfV4YA3wD8Cv4OjX8ToVQhgP/Ab4KfAN\n4EJgUQjh7RjjsuTLlUorAzyzbhuPrHrHqlJJksokUUCNMS4FlgKEEHpzyALgtRjjzbnXG0II04Ab\ngUQBta6tNcnuqdTZjJxb99rPp/WE4dx18fdZszL7+Kh+9XV87fNNzPrsSOoP7YFte8q1zIrjuZac\nM8uPc0vOmeXHuSVXyvnk/VllCOEwMCfG+EQ3+zwPrI4x3tRu21zgjhhjr55mnunhKq1UqAywfOJ0\n7r3gO+wedAIAn37vDW5acifjt71R1rVJklQN6grIlJ0p9U1STUBLh20twNAQwsAY474Sv7/UrZ2D\nhvDTryzg9xPOBaAuc5jLVv+ab638BQ2HDpZ5dZIkpZN38Su1Vo3/PHdf9F3eP2E4AKO2v8MNS+/i\njK2vlnllkiSlW6kD6jvAqA7bmoCdXj1VuexpGMR9X57HU2defHTbzLVLmff8Axx3YG8ZVyZJkqD0\nAfVFYHaHbRcBK5P+Qq0rVpEZ3liURdWqurZWGqdNOWabcztWfGc3i5Zv4b1d+wE4cWA9N/zyv3LO\npj8e3ceZ9cxzLTlnlh/nlpwzy49zS66zmRVL0uegDgY+027TKSGEyUBrjHFLCOFWYHSM8ercz+8F\nvhdCuA24H7gA+DofD609ygxvJDPCvvOknFvWgYOHeOyFTR+rKr3qnBF8+tY/HrOvM8uPc0vOmeXH\nuSXnzPLj3Mon6RXUKcAzuX/OkH0AP8ADwDyyH+ePPbJzjPGNEMIlwB3A9WQf1H9NjPG3BaxZSqS7\nqtK6bdvKvDpJktRR0uegPgfUd/PzuZ1sW062eUrqU1aVSpJUnbyLXzXJqlJJkqqXAVU1JZPJ8Oya\nt3j02Y1WlUqSVKUMqKoZ7+/ax31Pvsorm9qAbFXpnPPGM2vqp6iv96qpJEnVwoCqqpfJZHhpXQsP\nL4vs2Zdtf/rkyMHMv3QS45qGlHl1kiQpKQOqqtoHHx7goac2sHr9u0C2CHjm1HHMOe8UGvp3eT+f\nJEmqYAZUVa21G7fxwJL17Nidfej+yGGDuOaSSYSxw8q8MkmSVAgDqqrOh/sO8sgzG3l+7daj25on\nj+byC05j0ABPaUmSqp1/mquqxC3bWbR4Hdt27AXgxMEDmDt7ImeeatOHJEm1woCqqtBVVemVMyZw\nwnENZV2bJEkqLgOqKl53VaWSJKn2GFBVsawqlSQpnQyoqkhWlUqSlF4GVFUUq0olSZIBVRXDqlJJ\nkgQGVFUAq0olSVJ7BlSVlVWlkiSpIwOqysaqUkmS1BkDqvqcVaWSJKk7pgH1KatKJUlSTwyo6hNW\nlUqSpN4yoKrkrCqVJElJGFBVMlaVSpKkfBhQVRJWlUqSpHwZUFVUVpVKkqRCGVBVNF1Vlc6cOo5+\n9T50X5Ik9Y4BVQXrrKp0zMjBXGtVqSRJyoMBVQWxqlSSJBWbAVV5s6pUkiSVggFViVlVKkmSSsk0\noUSsKpUkSaVmQFWvWFUqSZL6igFVPbKqVJIk9SUDqrpkVakkSSoHA6o6ZVWpJEkqFwOqjmFVqSRJ\nKjcDqo6yqlSSJFUCA6qsKpUkSRXFgJpyVpVKkqRKY0BNMatKJUlSJTKgppBVpZIkqZKZRlLGqlJJ\nklTpDKgpYVWpJEmqFokDagjhu8DNQBOwFvh+jHFVF/s2A8902JwBTo4xvpv0vZUfq0olSVI1SRRQ\nQwhXAD8B/hJ4CbgReCqEMCHG+F43h34G2NXudXf7qkgO1dWz+J/f5dcvt1hVKkmSqkbSK6g3AT+L\nMT4IEEJYAFwCzANu6+a4bTHGHfktMauurbWQw1Oh/Yy2DjuZhTOvZ8PqdwAY0L+OK74wmvNPH07d\nvl2wb1dXv0yqdHZeea71zLkl58zy49ySc2b5cW7JlXI+vS5VDyEMAHYDfx5jfKLd9geAYTHGOZ0c\n00z2I/43gYHAvwI/ijGu7O37Zjj6lUn1QgZ48qxZ3D/9avY1DAJg4tb13Lj0TkZvf6e8i5MkSTWp\nLkGm7I0kV1BHAP2Alg7b3wUmdnHMVrJfB1gNDALmA8+FEKbGGNckXKt60HrCcO66+Pus+fTZAPQ/\ndIBvrvwll61+jH6Zw2VenSRJUu+U9C7+GGMEYrtNL4YQTiX73dWrSvneaZIBlk+czr0XfIfdg04A\n4FPb3uSmJXdyynubyrs4SZKkhJIE1G3AIbJ377fXBLyd4NdZBZybYH91Y+egIfz0Kwv4/YTsSOsy\nh7ls9a/51spf0HDoYJlXJ0mSlFyvA2qMcX8I4Y/AhcATACGEeuArwP9I8J6TyX70n0jrilVkhjcm\nPaymrd28k/tf+Hd2fJgNoiOP78f/ed8POWPrq0f3cW7dq2trpXHalGO2ObOeObfknFl+nFtyziw/\nzi25zmZWLEk/4l8IPBhCWE32SugNwHHA/QAhhFuB0THGq3OvbwBeB9bx0XdQm4GLky40M7yRzAjb\njqDzqtIvTx7NFWeexNhbXj1mX+eWnDPLj3NLzpnlx7kl58zy49zKJ1FAjTE+GkIYCfwYGAWsAWa2\newbqKGBsu0MayD43dQywh+yD/S+MMS4vdOFp1V1Vad22bWVenSRJUuES3yQVY7wHuKeLn83t8Pp2\n4Pb8lqb2rCqVJElpUdK7+FUcVpVKkqQ0MaBWsEOHD7PkD5t5fMUmq0olSVJqGFArVEvbHhYtXsdr\nW3cCMKChnivOP43ms8dQV1fUsgZJkqSKYkCtMJlMhmfXvMWjz25k/4Fs+9OpY4Yy/9JJNJ10fJlX\nJ0mSVHoG1Ary/q593Pfkq7yyqQ2AfvV1zDlvPDOnjqNffX2ZVydJktQ3DKgVIJPJ8NK6Fh5eFtmz\nL/vQ/TEjB3PtpZMY1zSkzKuTJEnqWwbUMvvgwwM89NQGVq9/F4A6YObUccw57xQa+nvVVJIkpY8B\ntYzWbtzGA0vWs2P3fgBGnDiI+ZdOIowdVuaVSZIklY8BtQy6qiq9/PzTOG6g/y+RJEnpZhrqY91V\nlUqSJMmA2mesKpUkSeodA2ofsKpUkiSp9wyoJWRVqSRJUnIG1BKxqlSSJCk/BtQis6pUkiSpMAbU\nImrbuZf7l6y3qlSSJKkABtQisKpUkiSpeAyoBbKqVJIkqbgMqAWwqlSSJKn4DKh5sKpUkiSpdExT\nCVlVKkmSVFoG1F7qrKr0nImf4CqrSiVJkorKgNoLnVWV/sWMwNTTm3zoviRJUpEZULthVakkSVLf\nM6B2wapSSZKk8jCgdmBVqSRJUnkZUNuxqlSSJKn8DKhYVSpJklRJUh9QrSqVJEmqLKkOqFaVSpIk\nVZ5UBlSrSiVJkipX6tKYVaWSJEmVLTUB1apSSZKk6pCKgGpVqSRJUvWo6YBqVakkSVL1qdmAalWp\nJElSdaq5gGpVqSRJUnWrqYBqVakkSVL1q4mAalWpJElS7aj6gGpVqSRJUm2p6oBqVakkSVLtqcqA\nalWpJElS7Uqc5kII3wVuBpqAtcD3Y4yrutm/GVgITAK2ALfEGB/Ma7VYVSpJklTrEn1JM4RwBfAT\n4L8AZ5MNqE+FEEZ2sf944DfA08BZwJ3AohDCxUkXeuDgYR59diO3/a+Xj4bTcyZ+gv97/lTDqSRJ\nUg1JegX1JuBnR66AhhAWAJcA84DbOtl/AfBajPHm3OsNIYRpwI3Ast6+6esjx3P7r9bz7zuzd+gf\nP6AfV547mqmnDKNu9w7YnfDfokbVtbX2aps+4szy49ySc2b5cW7JObP8OLfkSjmfXlcqhRAGkI2C\nfx5jfKLd9geAYTHGOZ0c8zywOsZ4U7ttc4E7Yoy9upPpkS/8H5l//OIVHOzXAMDZb6zh+mV30/hB\nW2+XLkmSpBKqS5ApeyPJFdQRQD+gpcP2d4GJXRzT1Mn+LcDQEMLAGOO+nt70f077CwAGHtjLvOUP\nMOtPS4s7AUmSJFWUir/lffHCOUfz6D+VcyGSJEnqE0luktoGHCJ7VbS9JuDtLo55BxjVyf47e3P1\nVJIkSenT64AaY9wP/BG48Mi2EEI98BXgxS4OezH38/YuAlYmW6YkSZLSIulH/AuBB0MIq4FVwA3A\nccD9ACGEW4HRMcarc/vfC3wvhHBbbp8LgK8Ds4uwdkmSJNWgRM9BjTE+Cvwn4MfAGuBMYGaM8b3c\nLqOAse32f4PsY6guAv6Z7OOlrokx/rbglUuSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmSJEmq\nFnU971JaIYTvAjeTrUBdC3w/xriqm/2byRYGTAK2ALfEGB/sg6VWlCRzy83smQ6bM8DJMcZ3S7nO\nShBCmE52Vp8DTga+FmN8vIdjmkn5eZZ0bmk/zwBCCD8ELgMmAB+Sbc37QYwx9nBcMyk+3/KZW9rP\ntxDCdcAC4NO5Ta8AP44xLu3mmGZSfJ5B8rml/TzrTAjhPwP/DbgrxnhjN/s1U8D5luhB/cUWQrgC\n+AnwX4CzyQatp0III7vYfzzwG+Bp4CzgTmBRCOHivllxZUg6t3Y+Q7ZMYRTZwPFe97vXjOPJFkt8\nN/c6093OnmdHJZpbO2k9zwCmA3cDU8kWlDQAy0IIx3d1gOcbkMfc2knr+bYF+AHZv0B+nmyIeiKE\ncEZnO3ueHZVobu2k9Tw7RghhCvAd4E9082dCMc63pFWnxXYT8LMjiTqEsIBs89Q84LZO9l8AvBZj\nvDn3ekMIYRrZhqplfbDeSpF0bkdsizHu6IP1VZTc34yXAoQQenOI5xl5ze2IVJ5nADHGWe1fhxC+\nDbxL9g/DFV0clvrzLc+5HZHK8y3GuLjDpr/OXR38Atmrgh2l/jyDvOZ2RCrPs/ZCCCcADwPzgb/p\nYfeCz7eyXUENIQwg+5vP745sizFmcq+/2MVhX2y/f86ybvavOXnO7Yh/DiFsDSEsCyF8qYTLrHap\nP88K5Hn2kWG5/9vWzT6ebx/Xm7kdkfrzLYTQL4TwH4CBwAtd7OZ51kEv53ZE6s8z4B5gcYzxGXr+\nimjB51s5P+IfAfQDWjpsf5fsJfTONHWyfwswNIQwsLjLq1j5zG0r8Jdkv+P152Q/4nguhHB2qRZZ\n5TzP8uN51k4IoZ7sx1orYozrutnV862dBHNL/fkWQvhsCOEDYC/wM+DyGOPGLnb3PMtJOLfUn2cA\nuSA/GfhhblNPX/kq+Hwr90f86gO5Gw3a32zwYgjhVLKX2q8qz6pUazzPPuYesjcHTCv3QqpMr+bm\n+QbAeuBM4ETg68AvQwjNMcaXy7usitfruXmeQQhhLHAXcGGMcX9ucx0lvtG+nAF1G3CIbMpurwl4\nu4tj3uHjVwmbgJ0xxn3FXV7FymdunVkFnFusRdUYz7PiSeV5FkL4W2A2MD3GuLWH3T3fchLOrTOp\nOt9ijAeA13Mv1+RuYLkOuLaT3T3PchLOrTOpOs/I3kw2Eni53f0I/YDzck8UGpj7qmF7BZ9vZfuI\nP5fC/whceGRb7qOdrwAvdnHYi7mft3cR2UeSpEKec+vMZLIfXejjUn+eFVGqzrMQQl0uZH0VuCDG\n+GYvDkv9+Zbn3DqTqvOtE/3o+s/11J9n3ehubp1J23n2O+DPyN6NfxbZf//VZG+YmtxJOIUinG/l\n/oh/IfBgCGE12b+R3AAcB9wPEEK4FRgdY7w6t/+9wPdCCLfl9rmA7OX52X298DJLNLcQwg1k/7a4\nDhhE9g68ZiAVjxcJIQwm+4iQI04JIUwGWmOMWzzPOpd0bmk/z3LuAb5BNmjtDiEcuYKwPca4F/x9\nrQuJ55b28y03jyfJfidyCPBNso/ruqXdzz3POkg6t7SfZwAxxg/I/vsfFULYA7Qd+Z54Kc63sj4H\nNcb4KPCfgB+Tfd7imcDMGOOR54uNAsa22/8Nso9Tugj4Z7LfAbkmxvjbPlx22SWdG9lnCv6E7HPL\nngM+S/a7JM/21ZrLbArwcu5/GbIB/2Xgv+Z+7nnWuURzw/MMso9WGUr2339ru/9d3m4fz7ePSzw3\nPN9GAg+R/T7l78h+DDsjd4c1eJ51JdHc8DzrSoZjb5TyfJMkSZIkSZIkSZIkSZIkSZIkSZIkSZIk\nSZIkSZIkSZIkSZIkSZIkSZIkSZIkSZIk1bz/H2q4VJC/o5HgAAAAAElFTkSuQmCC\n",
"text": [
"<matplotlib.figure.Figure at 0x4ca0e50>"
]
}
],
"prompt_number": 9
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 9
}
],
"metadata": {}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment