Created
December 13, 2017 16:18
-
-
Save fedden/144d0493d761867ae321f53a1b8d9a04 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def run_differential_evolution(solution_size=5, | |
population_size=1000, | |
iteration_count=100, | |
print_results=False, | |
differential_weight=1.0, | |
crossover_probability=0.5, | |
lower=0.0, | |
upper=1.0): | |
while population_size % 3 != 0: | |
population_size += 1 | |
target_solution = np.zeros((solution_size)) | |
mean = np.mean([lower, upper]) | |
std = np.std([lower, upper]) | |
population = tf.random_normal(shape=[population_size, solution_size], mean=mean, stddev=std) | |
for i in range(iteration_count): | |
random_1 = np.arange(0, population_size) | |
np.random.shuffle(random_1) | |
random_2 = np.arange(0, population_size) | |
np.random.shuffle(random_2) | |
random_3 = np.arange(0, population_size) | |
np.random.shuffle(random_3) | |
random_trio_1 = tf.reshape(tf.gather(population, random_1), shape=[-1, 3, solution_size]) | |
random_trio_2 = tf.reshape(tf.gather(population, random_2), shape=[-1, 3, solution_size]) | |
random_trio_3 = tf.reshape(tf.gather(population, random_3), shape=[-1, 3, solution_size]) | |
mutation_trios = tf.concat([random_trio_1, random_trio_2, random_trio_3], axis=0) | |
vectors_1, vectors_2, vectors_3 = tf.unstack(mutation_trios, axis=1, num=3) | |
doners = vectors_1 + differential_weight * (vectors_2 - vectors_3) | |
crossover_probabilities = tf.random_uniform(minval=0, maxval=1, shape=[population_size, solution_size]) | |
trial_population = tf.where(crossover_probabilities < crossover_probability, x=doners, y=population) | |
trial_fitnesses = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(trial_population, target_solution)), axis=1)) | |
og_fitnesses = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(population, target_solution)), axis=1)) | |
if print_results: print(tf.gather(og_fitnesses, tf.argmin(og_fitnesses))) | |
population = tf.where(trial_fitnesses < og_fitnesses, x=trial_population, y=population) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment