Created
December 13, 2017 15:42
-
-
Save fedden/d12b67c4ddd894aa00592efb7fec521f to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def vectorised_dfo(solution_size=5, population_size=1000000, iteration_count=100, disturbance_threshold=0.1, lower=-300.0, upper=300.0, print_results=False): | |
target_solution = tf.zeros((solution_size,)) | |
target_size = int(target_solution.get_shape()[0]) | |
mean = np.mean([lower, upper]) | |
std = np.std([lower, upper]) | |
population = tf.random_normal(shape=[population_size, target_size], mean=mean, stddev=std) | |
for _ in range(iteration_count): | |
fitnesses = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(population, target_solution)), axis=1)) | |
swarms_best_index = tf.argmin(fitnesses) | |
swarms_best = tf.gather(population, swarms_best_index) | |
if print_results: print(tf.gather(fitnesses, swarms_best_index)) | |
top_population = tf.reshape(tensor=population[0], shape=[1, target_size]) | |
middle_population = population[1:-1] | |
bottom_population = tf.reshape(tensor=population[-1], shape=[1, target_size]) | |
population_up = tf.concat([middle_population, bottom_population, top_population], axis=0) | |
population_down = tf.concat([bottom_population, top_population, middle_population], axis=0) | |
fitnesses_up = tf.concat([fitnesses[1:-1], | |
tf.reshape(fitnesses[-1], shape=[1]), | |
tf.reshape(fitnesses[0], shape=[1])], axis=0) | |
fitnesses_down = tf.concat([tf.reshape(fitnesses[-1], shape=[1]), | |
tf.reshape(fitnesses[0], shape=[1]), | |
fitnesses[1:-1]], axis=0) | |
best_neighbours = tf.where(fitnesses_up < fitnesses_down, x=population_up, y=population_down) | |
disturbance_rolls = tf.random_uniform(shape=[population_size, target_size], maxval=1.0) | |
random_resets = tf.random_normal(shape=[population_size, target_size], mean=mean, stddev=std) | |
move_amount = tf.random_uniform(shape=[population_size, target_size], maxval=1.0) | |
fly_update = best_neighbours + move_amount * (swarms_best - best_neighbours) | |
population = tf.where(disturbance_rolls < disturbance_threshold, random_resets, fly_update) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment