Last active
October 31, 2024 08:33
-
-
Save felipetavares/e83a4800cf9f39281cda3eea8f8b01d8 to your computer and use it in GitHub Desktop.
Simple, Useful and Slow: Assorted Reference Statistics Functions (utf-8)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Simple, Useful and Slow | |
// Assorted Reference Statistics Functions | |
// UTF-8 Edition | |
// Shorthands | |
pow = Math.pow | |
sqrt = Math.sqrt | |
pi = Math.PI | |
// Variables named: | |
// x, x1, x2, ..., xn: always a sample (array of numbers) | |
// v is always a number | |
// Length of a sample | |
n = x => x.length | |
// Mean | |
μ = x => x.reduce((acc, v) => acc+v, 0)/n(x) | |
// Variance | |
σ2 = x => x.reduce((acc, v) => acc+pow(v-μ(x), 2), 0)/(n(x)-1) | |
// Standard Deviation | |
σ = x => sqrt(σ2(x)) | |
// | |
// Student's t-test | |
// | |
// Degrees of freedom | |
df = (x1, x2) => n(x1)+n(x2) - 2 | |
// t-test | |
t = (x1, x2) => (μ(x1)-μ(x2))/sqrt(σ2(a)/n(a)+σ2(b)/n(b)) | |
// z-test (same as t, just uses different distribution when applying the score) | |
z = t | |
// | |
// Normal Distribution | |
// | |
// Euler | |
e = 2.7182818284 | |
// Normal Distribution | |
_N = (v, μ, σ2) => 1/sqrt(2*pi*σ2)*pow(e, -pow(v-μ, 2)/2*σ2) | |
// Standard Normal Distribution | |
N = v => 1/sqrt(2*pi)*pow(e, -0.5*v*v) | |
// | |
// Distribution Sampling | |
// | |
// Sample a distribution | |
sample = (distribution, from, to, delta) => { | |
let array = []; | |
for (;from<to;from+=delta) { | |
array.push(distribution(from)) | |
} | |
return array; | |
} | |
ε = 0.0001 | |
Ꝏ = 5 | |
// Integral | |
ʃ = (f, a, b) => sample(f, a, b, ε).reduce((acc, v) => acc+v, 0)*ε | |
// p-value | |
// One tailed | |
p_value_1 = (score, distribution) => ʃ(distribution || N, score, +Ꝏ ) | |
// Two tailed | |
p_value_2 = (score, distribution) => ʃ(distribution || N, score, +Ꝏ )+ʃ(distribution || N, -Ꝏ , -score) | |
p_value = p_value_2 | |
// Example: statistical significance: | |
a = [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ] | |
b = [ 10, 8, 7, 5, 3, 6, 1, 9, 4, 3 ] | |
p_value(z(a, b)) < 0.05 | |
a = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 0 ] | |
b = [ 0, 0, 0, 1, 0, 0, 1, 0, 0, 1 ] | |
p_value(z(a, b)) < 0.05 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment