Created
September 24, 2018 00:49
-
-
Save felipextrindade/a476a590ffac2c9021656a2d0ab2e8ad to your computer and use it in GitHub Desktop.
Machine Learning Example: Iris Flower Dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn.datasets import load_iris | |
from sklearn.model_selection import train_test_split | |
from sklearn.neighbors import KNeighborsClassifier | |
import numpy as np | |
iris_dataset = load_iris() | |
print("Target names: {}".format(iris_dataset['target_names'])) | |
print("Feature names: {}".format(iris_dataset['feature_names'])) | |
print("Type of data: {}".format(type(iris_dataset['data']))) | |
print("Shape of data: {}".format(iris_dataset['data'].shape)) | |
print("Type of target: {}".format(type(iris_dataset['target']))) | |
print("Shape of target: {}".format(iris_dataset['target'].shape)) | |
print("Target:\n{}".format(iris_dataset['target'])) | |
X_train, X_test, y_train, y_test = train_test_split(iris_dataset['data'], iris_dataset['target'], random_state=0) | |
print("X_train shape: {}".format(X_train.shape)) | |
print("y_train shape: {}".format(y_train.shape)) | |
# Same for the test samples | |
print("X_test shape: {}".format(X_test.shape)) | |
print("y_test shape: {}".format(y_test.shape)) | |
knn = KNeighborsClassifier(n_neighbors=1) | |
knn.fit(X_train, y_train) | |
X_new = np.array([[5, 2.9, 1, 0.2]]) | |
print("X_new.shape: {}".format(X_new.shape)) | |
prediction = knn.predict(X_new) | |
print("Prediction: {}".format(prediction)) | |
print("Predicted target name: {}".format(iris_dataset['target_names'][prediction])) | |
y_pred = knn.predict(X_test) | |
print("Test set predictions:\n {}".format(y_pred)) | |
print("Test set score (np.mean): {:.2f}".format(np.mean(y_pred == y_test))) | |
print("Test set score (knn.score): {:.2f}".format(knn.score(X_test, y_test))) |
dataset link?
dataset link?
Classic dataset is fetched. its present already there
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
thanks