Created
April 2, 2017 05:22
-
-
Save felixgwu/045c887b6ccdf0edf4648da0c40bcc12 to your computer and use it in GitHub Desktop.
FC-DenseNet Implementation in PyTorch
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
from torch import nn | |
__all__ = ['FCDenseNet', 'fcdensenet_tiny', 'fcdensenet56_nodrop', | |
'fcdensenet56', 'fcdensenet67', 'fcdensenet103', | |
'fcdensenet103_nodrop'] | |
class DenseBlock(nn.Module): | |
def __init__(self, nIn, growth_rate, depth, drop_rate=0, only_new=False, | |
bottle_neck=False): | |
super(DenseBlock, self).__init__() | |
self.only_new = only_new | |
self.depth = depth | |
self.growth_rate = growth_rate | |
self.layers = nn.ModuleList([self.get_transform( | |
nIn + i * growth_rate, growth_rate, bottle_neck, | |
drop_rate) for i in range(depth)]) | |
def forward(self, x): | |
if self.only_new: | |
outputs = [] | |
for i in range(self.depth): | |
tx = self.layers[i](x) | |
x = torch.cat((x, tx), 1) | |
outputs.append(tx) | |
return torch.cat(outputs, 1) | |
else: | |
for i in range(self.depth): | |
x = torch.cat((x, self.layers[i](x)), 1) | |
return x | |
def get_transform(self, nIn, nOut, bottle_neck=None, drop_rate=0): | |
if not bottle_neck or nIn <= nOut * bottle_neck: | |
return nn.Sequential( | |
nn.BatchNorm2d(nIn), | |
nn.ReLU(True), | |
nn.Conv2d(nIn, nOut, 3, stride=1, padding=1, bias=True), | |
nn.Dropout(drop_rate), | |
) | |
else: | |
nBottle = nOut * bottle_neck | |
return nn.Sequential( | |
nn.BatchNorm2d(nIn), | |
nn.ReLU(True), | |
nn.Conv2d(nIn, nBottle, 1, stride=1, padding=0, bias=True), | |
nn.BatchNorm2d(nBottle), | |
nn.ReLU(True), | |
nn.Conv2d(nBottle, nOut, 3, stride=1, padding=1, bias=True), | |
nn.Dropout(drop_rate), | |
) | |
class FCDenseNet(nn.Module): | |
def __init__(self, depths, growth_rates, n_scales=5, n_channel_start=48, | |
n_classes=12, drop_rate=0, bottle_neck=False): | |
super(FCDenseNet, self).__init__() | |
self.n_scales = n_scales | |
self.n_classes = n_classes | |
self.n_channel_start = n_channel_start | |
self.depths = [depths] * \ | |
(2 * n_scales + 1) if type(depths) == int else depths | |
self.growth_rates = [growth_rates] * (2 * n_scales + 1) if \ | |
type(growth_rates) == int else growth_rates | |
self.drop_rate = drop_rate | |
assert len(self.depths) == len(self.growth_rates) == 2 * n_scales + 1 | |
self.conv_first = nn.Conv2d( | |
3, n_channel_start, 3, stride=1, padding=1, bias=True) | |
self.dense_blocks = nn.ModuleList([]) | |
self.transition_downs = nn.ModuleList([]) | |
self.transition_ups = nn.ModuleList([]) | |
nskip = [] | |
nIn = self.n_channel_start | |
for i in range(n_scales): | |
self.dense_blocks.append( | |
DenseBlock(nIn, self.growth_rates[i], self.depths[i], | |
drop_rate=drop_rate, bottle_neck=bottle_neck)) | |
nIn += self.growth_rates[i] * self.depths[i] | |
nskip.append(nIn) | |
self.transition_downs.append(self.get_TD(nIn, drop_rate)) | |
self.dense_blocks.append( | |
DenseBlock(nIn, self.growth_rates[n_scales], self.depths[n_scales], | |
only_new=True, drop_rate=drop_rate, | |
bottle_neck=bottle_neck)) | |
nIn = self.growth_rates[n_scales] * self.depths[n_scales] | |
for i in range(n_scales-1): | |
self.transition_ups.append(nn.ConvTranspose2d( | |
nIn, nIn, 3, stride=2, padding=1, bias=True)) | |
nIn += nskip.pop() | |
self.dense_blocks.append( | |
DenseBlock(nIn, self.growth_rates[n_scales + 1 + i], | |
self.depths[n_scales + 1 + i], | |
only_new=True, drop_rate=drop_rate, | |
bottle_neck=bottle_neck)) | |
nIn = self.growth_rates[n_scales + 1 + i] * \ | |
self.depths[n_scales + 1 + i] | |
# last dense block | |
self.transition_ups.append(nn.ConvTranspose2d( | |
nIn, nIn, 3, stride=2, padding=1, bias=True)) | |
nIn += nskip.pop() | |
self.dense_blocks.append( | |
DenseBlock(nIn, self.growth_rates[2 * n_scales], | |
self.depths[2 * n_scales], drop_rate=drop_rate, | |
bottle_neck=bottle_neck)) | |
nIn += self.growth_rates[2 * n_scales] * \ | |
self.depths[2 * n_scales] | |
self.conv_last = nn.Conv2d(nIn, n_classes, 1, bias=True) | |
self.logsoftmax = nn.LogSoftmax() | |
def forward(self, x): | |
x = self.conv_first(x) | |
skip_connects = [] | |
# down sample | |
for i in range(self.n_scales): | |
x = self.dense_blocks[i](x) | |
skip_connects.append(x) | |
x = self.transition_downs[i](x) | |
# bottle neck | |
x = self.dense_blocks[self.n_scales](x) | |
# up sample | |
for i in range(self.n_scales): | |
skip = skip_connects.pop() | |
TU = self.transition_ups[i] | |
# adjust padding | |
TU.padding = (((x.size(2) - 1) * TU.stride[0] - skip.size(2) | |
+ TU.kernel_size[0] + 1) // 2, | |
((x.size(3) - 1) * TU.stride[1] - skip.size(3) | |
+ TU.kernel_size[1] + 1) // 2) | |
x = TU(x, output_size=skip.size()) | |
x = torch.cat((skip, x), 1) | |
x = self.dense_blocks[self.n_scales + 1 + i](x) | |
x = self.conv_last(x) | |
return self.logsoftmax(x) | |
def get_TD(self, nIn, drop_rate): | |
layers = [nn.BatchNorm2d(nIn), nn.ReLU( | |
True), nn.Conv2d(nIn, nIn, 1, bias=True)] | |
if drop_rate > 0: | |
layers.append(nn.Dropout(drop_rate)) | |
layers.append(nn.MaxPool2d(2)) | |
return nn.Sequential(*layers) | |
def fcdensenet_tiny(drop_rate=0): | |
return FCDenseNet(2, 6, drop_rate=drop_rate) | |
def fcdensenet56_nodrop(): | |
return FCDenseNet(4, 12, drop_rate=0) | |
def fcdensenet56(drop_rate=0.2): | |
return FCDenseNet(4, 12, drop_rate=drop_rate) | |
def fcdensenet67(drop_rate=0.2): | |
return FCDenseNet(5, 16, drop_rate=drop_rate) | |
def fcdensenet103(drop_rate=0.2): | |
return FCDenseNet([4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4], 16, | |
drop_rate=drop_rate) | |
def fcdensenet103_nodrop(drop_rate=0): | |
return FCDenseNet([4, 5, 7, 10, 12, 15, 12, 10, 7, 5, 4], 16, | |
drop_rate=drop_rate) |
@hmishfaq , 'N_scales' represents the number of DB block in downsample path
@fexigwu, would you share your dataLoader in this project?
hi
is their any contribution that i can do with this architecture to improve its performance? Many thanks.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
@felixgwu, What does "n_scales" refer to in FCDenseNet?