Created
July 6, 2021 03:21
-
-
Save felixvd/ffafe498719b85f84fdcb4e0beb69036 to your computer and use it in GitHub Desktop.
Convert between ROS Quaternion and UR (Universal Robot) axis-angle rotation representation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from math import pi, cos, sin, sqrt, atan2 | |
def norm2(a, b, c=0.0): | |
return sqrt(a**2 + b**2 + c**2) | |
def ur_axis_angle_to_quat(axis_angle): | |
# https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Unit_quaternions | |
angle = norm2(*axis_angle) | |
axis_normed = [axis_angle[0]/angle, axis_angle[1]/angle, axis_angle[2]/angle] | |
s = sin(angle/2) | |
return [s*axis_normed[0], s*axis_normed[1], s*axis_normed[2], cos(angle/2)] #xyzw | |
def quat_to_ur_axis_angle(quaternion): | |
# https://en.wikipedia.org/wiki/Axis%E2%80%93angle_representation#Unit_quaternions | |
# quaternion must be [xyzw] | |
angle = 2*atan2(norm2(quaternion[0], quaternion[1], quaternion[2]), quaternion[3]) | |
if abs(angle) > 1e-6: | |
axis_normed = [ quaternion[0]/sin(angle/2), quaternion[1]/sin(angle/2), quaternion[2]/sin(angle/2) ] | |
else: | |
axis_normed = 0.0 | |
return [axis_normed[0]*angle, axis_normed[1]*angle, axis_normed[2]*angle] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment