Skip to content

Instantly share code, notes, and snippets.

@fepegar
Last active May 25, 2025 12:54
Show Gist options
  • Save fepegar/b723d15de620cd2a3a4dbd71e491b59d to your computer and use it in GitHub Desktop.
Save fepegar/b723d15de620cd2a3a4dbd71e491b59d to your computer and use it in GitHub Desktop.
b723d15de620cd2a3a4dbd71e491b59d
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Display the source blob
Display the rendered blob
Raw
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@toufiqmusah
Copy link

Hi, thanks for this.
How possible is it to apply deformations only around a label/mask in a subject using the randomelacticdeformation method? Example:

mri = tio.ScalarImage('')
label = tio.LabelMap('')

subject = tio.Subject(mri=sample, seg=label)
subject.plot()

transform = tio.RandomElasticDeformation()
new_image = transform(subject)

Interesting! Here's an attempt, not perfect but might be good enough for your purposes:

import SimpleITK as sitk
import torch
import torchio as tio

size = 256
grid_spacing = 15

grid = sitk.GridSource(
    outputPixelType=sitk.sitkFloat32,
    size=(size, size, size),
    sigma=(0.5, 0.5, 0.5),
    gridSpacing=(grid_spacing, grid_spacing, grid_spacing),
    gridOffset=(0, 0, 0),
    spacing=(1, 1, 1),
) * -1

image = tio.ScalarImage.from_sitk(grid)

mask_tensor = torch.zeros_like(image.data, dtype=torch.bool)
mask_tensor[:, 50:150, 30:180, 50:200] = True
mask = tio.LabelMap(tensor=mask_tensor, affine=image.affine)

crop = tio.CropOrPad((100, 150, 150), mask_name="mask")
subject = tio.Subject(
    image=image,
    mask=mask,
)
roi = crop(subject)

elastic = tio.RandomElasticDeformation(
    locked_borders=2,
    max_displacement=20,
)

torch.manual_seed(0)
deformed = elastic(roi.image)

resample = tio.Resample(target=image)
resampled = resample(deformed)

result_tensor = image.data
result_tensor[mask_tensor] = resampled.data[mask_tensor]
result = tio.ScalarImage(tensor=result_tensor, affine=image.affine)
result.plot(figsize=(9, 3))

Thanks for the snippet. Its a great starting point:

image

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment