Last active
December 27, 2020 21:58
-
-
Save ferrihydrite/290f4874711f99456e542c71b893df75 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
""" | |
Read 24 bit WAV files with markers from Logic Pro, extract markers, and resave | |
file as a 32 bit float file with cue markers, directly compatible with | |
the Make Noise Morphagene. | |
Does not require input file to be 48000Hz, only that the .WAV file | |
has cue markers correct to its sampling rate, and that the input | |
.WAV is stereo. | |
Usage: | |
morphagene_logic.py -w <inputwavfile> -o <outputfile>' | |
See the Morphagene manual for naming conventions of output files: | |
http://www.makenoisemusic.com/content/manuals/morphagene-manual.pdf | |
# see http://stackoverflow.com/questions/15576798/create-32bit-float-wav-file-in-python | |
# see... http://blog.theroyweb.com/extracting-wav-file-header-information-using-a-python-script | |
# marker code from Joseph Basquin [https://gist.github.com/josephernest/3f22c5ed5dabf1815f16efa8fa53d476] | |
""" | |
import sys, getopt | |
import struct | |
import numpy as np | |
from scipy import interpolate | |
def float32_wav_file(file_name, sample_array, sample_rate, | |
markers=None, verbose=False): | |
(M,N)=sample_array.shape | |
#print "len sample_array=(%d,%d)" % (M,N) | |
byte_count = M * N * 4 # (len(sample_array)) * 4 # 32-bit floats | |
wav_file = "" | |
# write the header | |
wav_file += struct.pack('<ccccIccccccccIHHIIHH', | |
'R', 'I', 'F', 'F', | |
byte_count + 0x2c - 8, # header size | |
'W', 'A', 'V', 'E', 'f', 'm', 't', ' ', | |
0x10, # size of 'fmt ' header | |
3, # format 3 = floating-point PCM | |
M, # channels | |
sample_rate, # samples / second | |
sample_rate * 4, # bytes / second | |
4, # block alignment | |
32) # bits / sample | |
wav_file += struct.pack('<ccccI', | |
'd', 'a', 't', 'a', byte_count) | |
if verbose: | |
print("packing data...") | |
# flatten data in an alternating fashion | |
# see: http://soundfile.sapp.org/doc/WaveFormat/ | |
reordered_wav = [sample_array[k,j] for j in range(N) for k in range(M)] | |
wav_file += struct.pack('<%df' % len(reordered_wav), *reordered_wav) | |
if verbose: | |
print("saving audio...") | |
fid=open(file_name,'wb') | |
for value in wav_file: | |
fid.write(value) | |
if markers: # != None and != [] | |
if verbose: | |
print("saving cue markers...") | |
if isinstance(markers[0], dict):# then we have [{'position': 100, 'label': 'marker1'}, ...] | |
labels = [m['label'] for m in markers] | |
markers = [m['position'] for m in markers] | |
else: | |
labels = ['' for m in markers] | |
fid.write(b'cue ') | |
size = 4 + len(markers) * 24 | |
fid.write(struct.pack('<ii', size, len(markers))) | |
for i, c in enumerate(markers): | |
s = struct.pack('<iiiiii', i + 1, c, 1635017060, 0, 0, c)# 1635017060 is struct.unpack('<i',b'data') | |
fid.write(s) | |
lbls = '' | |
for i, lbl in enumerate(labels): | |
lbls += b'labl' | |
label = lbl + ('\x00' if len(lbl) % 2 == 1 else '\x00\x00') | |
size = len(lbl) + 1 + 4 # because \x00 | |
lbls += struct.pack('<ii', size, i + 1) | |
lbls += label | |
fid.write(b'LIST') | |
size = len(lbls) + 4 | |
fid.write(struct.pack('<i', size)) | |
fid.write(b'adtl')# https://web.archive.org/web/20141226210234/http://www.sonicspot.com/guide/wavefiles.html#list | |
fid.write(lbls) | |
fid.close() | |
def wav_file_read(filename,verbose=False): | |
# read file and close | |
fi=open(filename,'rb') | |
data=fi.read() | |
fi.close() | |
# take raw data and read subsections for important format data | |
A,B,C,D=struct.unpack('4c', data[0:4]) # 'RIFF' | |
ChunkSize=struct.unpack('<l', data[4:8])[0] #4+(8+SubChunk1Size)+8+SubChunk2Size) | |
A,B,C,D=struct.unpack('4c', data[8:12]) # 'WAVE' | |
A,B,C,D=struct.unpack('4c', data[12:16]) # 'fmt ' | |
Subchunk1Size=struct.unpack('<l', data[16:20])[0] # LITTLE ENDIAN, long, 16 | |
AudioFormat=struct.unpack('<h', data[20:22])[0] # LITTLE ENDIAN, short, 1 | |
NumChannels=struct.unpack('<h', data[22:24])[0] # LITTLE ENDIAN, short, Mono = 1, Stereo = 2 | |
SampleRate =struct.unpack('<l', data[24:28])[0] # LITTLE ENDIAN, long, sample rate in samples per second | |
ByteRate=struct.unpack('<l', data[28:32])[0] # self.SampleRate * self.NumChannels * self.BitsPerSample/8)) # (ByteRate) LITTLE ENDIAN, long | |
BlockAlign=struct.unpack('<h', data[32:34])[0] # self.NumChannels * self.BitsPerSample/8)) # (BlockAlign) LITTLE ENDIAN, short | |
BitsPerSample=struct.unpack('<h', data[34:36])[0] # LITTLE ENDIAN, short | |
A,B,C,D=struct.unpack('4c', data[36:40]) # BIG ENDIAN, char*4 | |
SubChunk2Size=struct.unpack('<l', data[40:44])[0] # LITTLE ENDIAN, long | |
waveData=data[44:] | |
(M,N)=(len(waveData),len(waveData[0])) | |
if verbose: | |
print("ChunkSize =%d\nSubchunk1Size =%d\nAudioFormat =%d\nNumChannels =%d\nSampleRate =%d\nByteRate =%d\nBlockAlign =%d\nBitsPerSample =%d\nA:%c, B:%c, C:%c, D:%c\nSubChunk2Size =%d" % | |
(ChunkSize , | |
Subchunk1Size, | |
AudioFormat , | |
NumChannels , | |
SampleRate , | |
ByteRate , | |
BlockAlign , | |
BitsPerSample , | |
A, B, C, D , | |
SubChunk2Size )) | |
# convert audio data to float based on bitdepth | |
if BitsPerSample==8: | |
if verbose: | |
print("Unpacking 8 bits on len(waveData)=%d" % len(waveData)) | |
d=np.fromstring(waveData,np.uint8) | |
floatdata=d.astype(np.float64)/np.float(127) | |
elif BitsPerSample==16: | |
if verbose: | |
print("Unpacking 16 bits on len(waveData)=%d" % len(waveData)) | |
d=np.zeros(SubChunk2Size/2, dtype=np.int16) | |
j=0 | |
for k in range(0, SubChunk2Size, 2): | |
d[j]=struct.unpack('<h',waveData[k:k+2])[0] | |
j=j+1 | |
floatdata=d.astype(np.float64)/np.float(32767) | |
elif BitsPerSample==24: | |
if verbose: | |
print("Unpacking 24 bits on len(waveData)=%d" % len(waveData)) | |
d=np.zeros(SubChunk2Size/3, dtype=np.int32) | |
j=0 | |
for k in range(0, SubChunk2Size, 3): | |
d[j]=struct.unpack('<l',struct.pack('c',waveData[k])+waveData[k:k+3])[0] | |
j=j+1 | |
floatdata=d.astype(np.float64)/np.float(2147483647) | |
else: # anything else will be considered 32 bits | |
if verbose: | |
print("Unpacking 32 bits on len(waveData)=%d" % len(waveData)) | |
d=np.fromstring(waveData,np.int32) | |
floatdata=d.astype(np.float64)/np.float(2147483647) | |
v=floatdata[0::NumChannels] | |
for i in range(1,NumChannels): | |
v=np.vstack((v,floatdata[i::NumChannels])) | |
#return (np.vstack((floatdata[0::2],floatdata[1::2])), SampleRate, NumChannels, BitsPerSample) | |
return (v, SampleRate, NumChannels, BitsPerSample) | |
def readmarkers(file, mmap=False): | |
''' | |
Extract cue markers (in frames) from a WAV file. | |
From: | |
https://stackoverflow.com/questions/20011239/read-markers-of-wav-file | |
''' | |
def _read_riff_chunk(fid): | |
str1 = fid.read(4) | |
if str1 != b'RIFF': | |
raise ValueError("Not a WAV file.") | |
fsize = struct.unpack('<I', fid.read(4))[0] + 8 | |
str2 = fid.read(4) | |
if (str2 != b'WAVE'): | |
raise ValueError("Not a WAV file.") | |
return fsize | |
def _skip_unknown_chunk(fid): | |
data = fid.read(4) | |
size = struct.unpack('<i', data)[0] | |
if bool(size & 1):# if odd number of bytes, move 1 byte further (data chunk is word-aligned) | |
size += 1 | |
fid.seek(size, 1) | |
if hasattr(file,'read'): | |
fid = file | |
else: | |
fid = open(file, 'rb') | |
fsize = _read_riff_chunk(fid) | |
cue = [] | |
while (fid.tell() < fsize): | |
chunk_id = fid.read(4) | |
if chunk_id == b'cue ': | |
size, numcue = struct.unpack('<ii',fid.read(8)) | |
for c in range(numcue): | |
id, position, datachunkid, chunkstart, blockstart, sampleoffset = struct.unpack('<iiiiii',fid.read(24)) | |
cue.append(position) | |
else: | |
_skip_unknown_chunk(fid) | |
fid.close() | |
return cue | |
def change_samplerate_interp(old_audio,old_rate,new_rate): | |
''' | |
Change sample rate to new sample rate by simple interpolation. | |
If old_rate > new_rate, there may be aliasing / data loss. | |
Input should be in column format, as the interpolation will be completed | |
on each channel this way. | |
Modified from: | |
https://stackoverflow.com/questions/33682490/how-to-read-a-wav-file-using-scipy-at-a-different-sampling-rate | |
''' | |
if old_rate != new_rate: | |
# duration of audio | |
duration = old_audio.shape[0] / old_rate | |
# length of old and new audio | |
time_old = np.linspace(0, duration, old_audio.shape[0]) | |
time_new = np.linspace(0, duration, int(old_audio.shape[0] * new_rate / old_rate)) | |
# fit old_audio into new_audio length by interpolation | |
interpolator = interpolate.interp1d(time_old, old_audio.T) | |
new_audio = interpolator(time_new).T | |
return new_audio | |
else: | |
print('Conversion not needed, old and new rates match') | |
return old_audio # conversion not needed | |
def main(argv): | |
inputwavefile = '' | |
outputfile = '' | |
try: | |
opts, args = getopt.getopt(argv,"hw:o:",["wavfile=","outputfile="]) | |
except getopt.GetoptError: | |
print('Error in usage, correct format:\n'+\ | |
'morphagene_logic.py -w <inputwavfile> -o <outputfile>') | |
sys.exit(2) | |
for opt, arg in opts: | |
if opt == '-h': | |
print('morphagene_logic.py -w <inputwavfile> -o <outputfile>') | |
sys.exit(2) | |
elif opt in ("-w", "--wavfile"): | |
inputwavefile = arg | |
elif opt in ("-o", "--outputfile"): | |
outputfile = arg | |
print('Input wave file: %s'%inputwavefile) | |
print('Output Morphagene reel: %s'%outputfile) | |
########################################################################### | |
''' | |
Write single 24bit WAV file, edited in Logic with cues, to Morphagene 32bit | |
WAV file at 48000hz sample rate. | |
''' | |
########################################################################### | |
morph_srate = 48000 # required samplerate for Morphagene | |
morpth_bd = 32 | |
# read labels from stereo Audacity label file, ignore text, and use one channel | |
logic_cues = readmarkers(inputwavefile) | |
if logic_cues: # if not empty | |
#skip first tempo element, as well as markers at 0, as there is | |
# no audio before that point | |
logic_cues = np.array(logic_cues)[1:] | |
logic_cues = logic_cues[np.nonzero(logic_cues)] | |
else: | |
raise ValueError("WAV file does not contain cue points") | |
# read pertinent info from audio file, exit if input wave file is broken | |
try: | |
(array,sample_rate,num_channels,bits_per_sample)=wav_file_read(inputwavefile) | |
except: | |
raise ValueError('Input .wav file %s is poorly formatted, exiting'%inputwavefile) | |
# check if input wav has a different rate than desired Morphagene rate, | |
# and correct by interpolation | |
if sample_rate != morph_srate: | |
print("Correcting input sample rate %iHz to Morphagene rate %iHz"%(sample_rate,morph_srate)) | |
# perform interpolation on each channel, then transpose back | |
array = change_samplerate_interp(array.T,float(sample_rate),float(morph_srate)).T | |
# convert labels in seconds to labels in frames, adjusting for change | |
# in rate | |
sc = float(morph_srate) / float(sample_rate) | |
frame_labs = (logic_cues * sc).astype(np.int) | |
else: | |
frame_labs = logic_cues.astype(np.int) | |
frame_dict = [{'position': l, 'label': 'marker%i'%(i+1)} for i,l in enumerate(frame_labs)] | |
print("Correcting input %i-bit bitdepth to Morphagene %i-bit float bitdepth"%(bits_per_sample,morpth_bd)) | |
# write wav file with additional cue markers from labels | |
float32_wav_file(outputfile,array,morph_srate,markers=frame_dict,verbose=True) | |
print('Saved Morphagene reel with %i splices: %s'%(len(frame_labs),outputfile)) | |
if __name__ == "__main__": | |
main(sys.argv[1:]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment