Skip to content

Instantly share code, notes, and snippets.

@ferrihydrite
Last active December 27, 2020 21:58
Show Gist options
  • Save ferrihydrite/290f4874711f99456e542c71b893df75 to your computer and use it in GitHub Desktop.
Save ferrihydrite/290f4874711f99456e542c71b893df75 to your computer and use it in GitHub Desktop.
# -*- coding: utf-8 -*-
"""
Read 24 bit WAV files with markers from Logic Pro, extract markers, and resave
file as a 32 bit float file with cue markers, directly compatible with
the Make Noise Morphagene.
Does not require input file to be 48000Hz, only that the .WAV file
has cue markers correct to its sampling rate, and that the input
.WAV is stereo.
Usage:
morphagene_logic.py -w <inputwavfile> -o <outputfile>'
See the Morphagene manual for naming conventions of output files:
http://www.makenoisemusic.com/content/manuals/morphagene-manual.pdf
# see http://stackoverflow.com/questions/15576798/create-32bit-float-wav-file-in-python
# see... http://blog.theroyweb.com/extracting-wav-file-header-information-using-a-python-script
# marker code from Joseph Basquin [https://gist.github.com/josephernest/3f22c5ed5dabf1815f16efa8fa53d476]
"""
import sys, getopt
import struct
import numpy as np
from scipy import interpolate
def float32_wav_file(file_name, sample_array, sample_rate,
markers=None, verbose=False):
(M,N)=sample_array.shape
#print "len sample_array=(%d,%d)" % (M,N)
byte_count = M * N * 4 # (len(sample_array)) * 4 # 32-bit floats
wav_file = ""
# write the header
wav_file += struct.pack('<ccccIccccccccIHHIIHH',
'R', 'I', 'F', 'F',
byte_count + 0x2c - 8, # header size
'W', 'A', 'V', 'E', 'f', 'm', 't', ' ',
0x10, # size of 'fmt ' header
3, # format 3 = floating-point PCM
M, # channels
sample_rate, # samples / second
sample_rate * 4, # bytes / second
4, # block alignment
32) # bits / sample
wav_file += struct.pack('<ccccI',
'd', 'a', 't', 'a', byte_count)
if verbose:
print("packing data...")
# flatten data in an alternating fashion
# see: http://soundfile.sapp.org/doc/WaveFormat/
reordered_wav = [sample_array[k,j] for j in range(N) for k in range(M)]
wav_file += struct.pack('<%df' % len(reordered_wav), *reordered_wav)
if verbose:
print("saving audio...")
fid=open(file_name,'wb')
for value in wav_file:
fid.write(value)
if markers: # != None and != []
if verbose:
print("saving cue markers...")
if isinstance(markers[0], dict):# then we have [{'position': 100, 'label': 'marker1'}, ...]
labels = [m['label'] for m in markers]
markers = [m['position'] for m in markers]
else:
labels = ['' for m in markers]
fid.write(b'cue ')
size = 4 + len(markers) * 24
fid.write(struct.pack('<ii', size, len(markers)))
for i, c in enumerate(markers):
s = struct.pack('<iiiiii', i + 1, c, 1635017060, 0, 0, c)# 1635017060 is struct.unpack('<i',b'data')
fid.write(s)
lbls = ''
for i, lbl in enumerate(labels):
lbls += b'labl'
label = lbl + ('\x00' if len(lbl) % 2 == 1 else '\x00\x00')
size = len(lbl) + 1 + 4 # because \x00
lbls += struct.pack('<ii', size, i + 1)
lbls += label
fid.write(b'LIST')
size = len(lbls) + 4
fid.write(struct.pack('<i', size))
fid.write(b'adtl')# https://web.archive.org/web/20141226210234/http://www.sonicspot.com/guide/wavefiles.html#list
fid.write(lbls)
fid.close()
def wav_file_read(filename,verbose=False):
# read file and close
fi=open(filename,'rb')
data=fi.read()
fi.close()
# take raw data and read subsections for important format data
A,B,C,D=struct.unpack('4c', data[0:4]) # 'RIFF'
ChunkSize=struct.unpack('<l', data[4:8])[0] #4+(8+SubChunk1Size)+8+SubChunk2Size)
A,B,C,D=struct.unpack('4c', data[8:12]) # 'WAVE'
A,B,C,D=struct.unpack('4c', data[12:16]) # 'fmt '
Subchunk1Size=struct.unpack('<l', data[16:20])[0] # LITTLE ENDIAN, long, 16
AudioFormat=struct.unpack('<h', data[20:22])[0] # LITTLE ENDIAN, short, 1
NumChannels=struct.unpack('<h', data[22:24])[0] # LITTLE ENDIAN, short, Mono = 1, Stereo = 2
SampleRate =struct.unpack('<l', data[24:28])[0] # LITTLE ENDIAN, long, sample rate in samples per second
ByteRate=struct.unpack('<l', data[28:32])[0] # self.SampleRate * self.NumChannels * self.BitsPerSample/8)) # (ByteRate) LITTLE ENDIAN, long
BlockAlign=struct.unpack('<h', data[32:34])[0] # self.NumChannels * self.BitsPerSample/8)) # (BlockAlign) LITTLE ENDIAN, short
BitsPerSample=struct.unpack('<h', data[34:36])[0] # LITTLE ENDIAN, short
A,B,C,D=struct.unpack('4c', data[36:40]) # BIG ENDIAN, char*4
SubChunk2Size=struct.unpack('<l', data[40:44])[0] # LITTLE ENDIAN, long
waveData=data[44:]
(M,N)=(len(waveData),len(waveData[0]))
if verbose:
print("ChunkSize =%d\nSubchunk1Size =%d\nAudioFormat =%d\nNumChannels =%d\nSampleRate =%d\nByteRate =%d\nBlockAlign =%d\nBitsPerSample =%d\nA:%c, B:%c, C:%c, D:%c\nSubChunk2Size =%d" %
(ChunkSize ,
Subchunk1Size,
AudioFormat ,
NumChannels ,
SampleRate ,
ByteRate ,
BlockAlign ,
BitsPerSample ,
A, B, C, D ,
SubChunk2Size ))
# convert audio data to float based on bitdepth
if BitsPerSample==8:
if verbose:
print("Unpacking 8 bits on len(waveData)=%d" % len(waveData))
d=np.fromstring(waveData,np.uint8)
floatdata=d.astype(np.float64)/np.float(127)
elif BitsPerSample==16:
if verbose:
print("Unpacking 16 bits on len(waveData)=%d" % len(waveData))
d=np.zeros(SubChunk2Size/2, dtype=np.int16)
j=0
for k in range(0, SubChunk2Size, 2):
d[j]=struct.unpack('<h',waveData[k:k+2])[0]
j=j+1
floatdata=d.astype(np.float64)/np.float(32767)
elif BitsPerSample==24:
if verbose:
print("Unpacking 24 bits on len(waveData)=%d" % len(waveData))
d=np.zeros(SubChunk2Size/3, dtype=np.int32)
j=0
for k in range(0, SubChunk2Size, 3):
d[j]=struct.unpack('<l',struct.pack('c',waveData[k])+waveData[k:k+3])[0]
j=j+1
floatdata=d.astype(np.float64)/np.float(2147483647)
else: # anything else will be considered 32 bits
if verbose:
print("Unpacking 32 bits on len(waveData)=%d" % len(waveData))
d=np.fromstring(waveData,np.int32)
floatdata=d.astype(np.float64)/np.float(2147483647)
v=floatdata[0::NumChannels]
for i in range(1,NumChannels):
v=np.vstack((v,floatdata[i::NumChannels]))
#return (np.vstack((floatdata[0::2],floatdata[1::2])), SampleRate, NumChannels, BitsPerSample)
return (v, SampleRate, NumChannels, BitsPerSample)
def readmarkers(file, mmap=False):
'''
Extract cue markers (in frames) from a WAV file.
From:
https://stackoverflow.com/questions/20011239/read-markers-of-wav-file
'''
def _read_riff_chunk(fid):
str1 = fid.read(4)
if str1 != b'RIFF':
raise ValueError("Not a WAV file.")
fsize = struct.unpack('<I', fid.read(4))[0] + 8
str2 = fid.read(4)
if (str2 != b'WAVE'):
raise ValueError("Not a WAV file.")
return fsize
def _skip_unknown_chunk(fid):
data = fid.read(4)
size = struct.unpack('<i', data)[0]
if bool(size & 1):# if odd number of bytes, move 1 byte further (data chunk is word-aligned)
size += 1
fid.seek(size, 1)
if hasattr(file,'read'):
fid = file
else:
fid = open(file, 'rb')
fsize = _read_riff_chunk(fid)
cue = []
while (fid.tell() < fsize):
chunk_id = fid.read(4)
if chunk_id == b'cue ':
size, numcue = struct.unpack('<ii',fid.read(8))
for c in range(numcue):
id, position, datachunkid, chunkstart, blockstart, sampleoffset = struct.unpack('<iiiiii',fid.read(24))
cue.append(position)
else:
_skip_unknown_chunk(fid)
fid.close()
return cue
def change_samplerate_interp(old_audio,old_rate,new_rate):
'''
Change sample rate to new sample rate by simple interpolation.
If old_rate > new_rate, there may be aliasing / data loss.
Input should be in column format, as the interpolation will be completed
on each channel this way.
Modified from:
https://stackoverflow.com/questions/33682490/how-to-read-a-wav-file-using-scipy-at-a-different-sampling-rate
'''
if old_rate != new_rate:
# duration of audio
duration = old_audio.shape[0] / old_rate
# length of old and new audio
time_old = np.linspace(0, duration, old_audio.shape[0])
time_new = np.linspace(0, duration, int(old_audio.shape[0] * new_rate / old_rate))
# fit old_audio into new_audio length by interpolation
interpolator = interpolate.interp1d(time_old, old_audio.T)
new_audio = interpolator(time_new).T
return new_audio
else:
print('Conversion not needed, old and new rates match')
return old_audio # conversion not needed
def main(argv):
inputwavefile = ''
outputfile = ''
try:
opts, args = getopt.getopt(argv,"hw:o:",["wavfile=","outputfile="])
except getopt.GetoptError:
print('Error in usage, correct format:\n'+\
'morphagene_logic.py -w <inputwavfile> -o <outputfile>')
sys.exit(2)
for opt, arg in opts:
if opt == '-h':
print('morphagene_logic.py -w <inputwavfile> -o <outputfile>')
sys.exit(2)
elif opt in ("-w", "--wavfile"):
inputwavefile = arg
elif opt in ("-o", "--outputfile"):
outputfile = arg
print('Input wave file: %s'%inputwavefile)
print('Output Morphagene reel: %s'%outputfile)
###########################################################################
'''
Write single 24bit WAV file, edited in Logic with cues, to Morphagene 32bit
WAV file at 48000hz sample rate.
'''
###########################################################################
morph_srate = 48000 # required samplerate for Morphagene
morpth_bd = 32
# read labels from stereo Audacity label file, ignore text, and use one channel
logic_cues = readmarkers(inputwavefile)
if logic_cues: # if not empty
#skip first tempo element, as well as markers at 0, as there is
# no audio before that point
logic_cues = np.array(logic_cues)[1:]
logic_cues = logic_cues[np.nonzero(logic_cues)]
else:
raise ValueError("WAV file does not contain cue points")
# read pertinent info from audio file, exit if input wave file is broken
try:
(array,sample_rate,num_channels,bits_per_sample)=wav_file_read(inputwavefile)
except:
raise ValueError('Input .wav file %s is poorly formatted, exiting'%inputwavefile)
# check if input wav has a different rate than desired Morphagene rate,
# and correct by interpolation
if sample_rate != morph_srate:
print("Correcting input sample rate %iHz to Morphagene rate %iHz"%(sample_rate,morph_srate))
# perform interpolation on each channel, then transpose back
array = change_samplerate_interp(array.T,float(sample_rate),float(morph_srate)).T
# convert labels in seconds to labels in frames, adjusting for change
# in rate
sc = float(morph_srate) / float(sample_rate)
frame_labs = (logic_cues * sc).astype(np.int)
else:
frame_labs = logic_cues.astype(np.int)
frame_dict = [{'position': l, 'label': 'marker%i'%(i+1)} for i,l in enumerate(frame_labs)]
print("Correcting input %i-bit bitdepth to Morphagene %i-bit float bitdepth"%(bits_per_sample,morpth_bd))
# write wav file with additional cue markers from labels
float32_wav_file(outputfile,array,morph_srate,markers=frame_dict,verbose=True)
print('Saved Morphagene reel with %i splices: %s'%(len(frame_labs),outputfile))
if __name__ == "__main__":
main(sys.argv[1:])
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment