Created
August 3, 2016 22:35
-
-
Save ferrine/a003ace716c278ab87669f2fbd37727b to your computer and use it in GitHub Desktop.
bayes by backprop wrapping
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
from functools import wraps | |
from theano import tensor as T | |
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams | |
from lasagne import init | |
from lasagne.random import get_rng | |
__all__ = ['Accumulator', 'NormalApproximation', 'NormalApproximationScMix', 'bbpwrap'] | |
c = - 0.5 * math.log(2 * math.pi) | |
def log_normal(x, mean, std, eps=0.0): | |
std += eps | |
return c - T.log(T.abs_(std)) - (x - mean) ** 2 / (2 * std ** 2) | |
def log_normal3(x, mean, rho, eps=0.0): | |
std = T.log1p(T.exp(rho)) | |
return log_normal(x, mean, std, eps) | |
class Accumulator(object): | |
def __init__(self): | |
""" | |
A simple class for accumulating any cost | |
Used in layers with BayesianMeta | |
""" | |
self.srng = RandomStreams(get_rng().randint(1, 2147462579)) | |
self.total = [] | |
def get_cost(self): | |
return sum(map(T.sum,self.total)) | |
def add_cost(self, new): | |
self.total.append(new) | |
class NormalApproximation(object): | |
def __init__(self, pm=0, pstd=T.exp(-3)): | |
self.pm = pm | |
self.pstd = pstd | |
def log_prior(self, x): | |
return log_normal(x, self.pm, self.pstd) | |
def __call__(self, layer, spec, shape, **tags): | |
# case when user uses default init specs | |
if not isinstance(spec, dict): | |
spec = {'mu': spec} | |
# important! | |
# we declare that params we add next | |
# are the ones we need to fit the distribution | |
tags['variational'] = True | |
rho_spec = spec.get('rho', init.Normal(1)) | |
mu_spec = spec.get('mu', init.Normal(1)) | |
rho = layer.add_param(rho_spec, shape, **tags) | |
mean = layer.add_param(mu_spec, shape, **tags) | |
e = layer.acc.srng.normal(shape, std=1) | |
W = mean + T.log1p(T.exp(rho)) * e | |
q_p = self.log_posterior_approx(W, mean, rho) - self.log_prior(W) | |
layer.acc.add_cost(q_p) | |
return W | |
@staticmethod | |
def log_posterior_approx(W, mean, rho): | |
return log_normal3(W, mean, rho) | |
class NormalApproximationScMix(NormalApproximation): | |
def __init__(self, pm1=.0, pstd1=.5, pi=.5, pm2=.0, pstd2=1e-3): | |
""" | |
:param pi: | |
weight for first Gaussian | |
pi is in [0, 1] | |
:param pm1: float | |
prior mean for first Gaussian | |
:param std1: | |
prior std for first Gaussian | |
:param pm2: | |
prior mean for second Gaussian | |
:param std2: | |
prior std for second Gaussian | |
""" | |
assert .0 <= pi <= 1., 'Weight %d not in [0, 1]' % pi | |
self.pi = pi | |
self.pm1 = pm1 | |
self.pstd1 = pstd1 | |
self.pm2 = pm2 | |
self.pstd2 = pstd2 | |
def log_prior(self, x): | |
return self.pi * log_normal(x, self.pm1, self.pstd1) + \ | |
(1 - self.pi) * log_normal(x, self.pm2, self.pstd2) | |
def bbpwrap(approximation=NormalApproximation()): | |
def decorator(cls): | |
def add_param_wrap(add_param): | |
@wraps(add_param) | |
def wrapped(self, spec, shape, name=None, **tags): | |
# we should take care about some user specification | |
# to avoid bbp hook just set tags['variational'] = True | |
if not tags.get('trainable', True) or tags.get('variational', False): | |
return add_param(self, spec, shape, name, **tags) | |
else: | |
# they don't need to be regularized, strictly | |
tags['regularizable'] = False | |
param = self.approximation(self, spec, shape, **tags) | |
return param | |
return wrapped | |
def init_wrap(__init__): | |
@wraps(__init__) | |
def wrapped(self, acc, *args, **kwargs): | |
self.acc = acc # type: Accumulator | |
__init__(self, *args, **kwargs) | |
return wrapped | |
cls.approximation = approximation | |
cls.add_param = add_param_wrap(cls.add_param) | |
cls.__init__ = init_wrap(cls.__init__) | |
return cls | |
return decorator | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment