Created
December 20, 2019 11:19
-
-
Save filipre/f90c2b49d55ebd89329218a0f64dcf5a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import torch | |
""" | |
w* = \argmin_{w\in R^L} \delta_\Delta(w) + \frac12 (w-v)^T H (w-v) | |
where H is diagonal (represented as array) | |
""" | |
def scaled_proj(v, H): | |
N, L = v.size() | |
Hv = H * v | |
Hv_, ind = Hv.sort(dim=1, descending=True) | |
ind_ = ind + torch.arange(start=0, end=N*L, step=L).view(N, 1).repeat(1, L) | |
v_ = torch.take(v, ind_).view(N, L) | |
H_ = torch.take(H.repeat(N, 1), ind_).view(N, L) | |
sum_inv_H_ = torch.cumsum(torch.reciprocal(H_), -1) # !!! | |
sum_v_ = torch.cumsum(v_, -1) | |
potential_lambda = (torch.reciprocal(sum_inv_H_)) * (1-sum_v_) | |
test = Hv_ + potential_lambda > 0 | |
range = torch.arange(1, L+1).repeat(N, 1) | |
over_0 = test * range | |
rho = torch.argmax(over_0, 1) | |
rho_ = rho + torch.arange(start=0, end=N*L, step=L) | |
right_lambda = torch.take(potential_lambda, rho_) | |
right_lambda_ = right_lambda.view(N, 1).repeat(1, L) | |
w = torch.max(torch.zeros_like(v), v + (right_lambda_ / H.repeat(N, 1))) | |
return w | |
if __name__ == '__main__': | |
N, L = 10, 4 | |
v = torch.randn(N, L) | |
H = torch.arange(start=1, end=L+1, dtype=torch.float) | |
w = scaled_proj(v, H) | |
print(w) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment