Skip to content

Instantly share code, notes, and snippets.

View filmo's full-sized avatar

PhilGlau filmo

  • Georgia Tech University
  • Los Angeles
View GitHub Profile
@filmo
filmo / gist:6720092a1ceac129f52402dc61af0f5a
Last active July 15, 2023 22:49
mat1 and mat2 shapes cannot be multiplied (trying to finetune llama-7b using https://huggingface.co/timdettmers/guanaco-33b)
0%| | 0/1000 [00:00<?, ?it/s]You're using a PreTrainedTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.
Traceback (most recent call last):
File "/home/philglau/PycharmProjects/tokenizersLLM/medium_article_falcon7b.py", line 87, in <module>
trainer.train()
File "/home/philglau/anaconda3/envs/pytorch_hug_llm_203/lib/python3.11/site-packages/transformers/trainer.py", line 1645, in train
return inner_training_loop(
^^^^^^^^^^^^^^^^^^^^
File "/home/philglau/anaconda3/envs/pytorch_hug_llm_203/lib/python3.11/site-packages/transformers/trainer.py", line 1938, in _inner_training_loop
tr_loss_step = self.training_step(model, inputs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@filmo
filmo / gist:2c1ac7467c26f62f589422aa55206a2e
Created June 18, 2018 02:52
problem with train.py for donkeycar
On line 35 shuffle is imported from sklearn
from sklearn.utils import shuffle
and then later called inside the data generator with:
shuffle(keys)
However, shuffle from sklearn does ~not~ shuffle in-place. It returns a shuffled list, leaving the input parameter untouched.
@filmo
filmo / binned_throttle.py
Last active March 14, 2018 00:50
binned throttle for donkeycar
import numpy as np
np.set_printoptions(precision=4,suppress=True,linewidth=180)
def clamp(n, min, max):
if n < min:
return min
if n > max:
return max
return n
Used a 2-layer Fully Connected network with H1=100, H2=60 and ReLU
He Initialization of weights
Adam Optimizer. Initial learning rate = 0.001 Learning rate reduced using gamma of 0.50 every 350 episodes
Gamma = 0.99
Eps = 1.00
Eps Decay = 0.98
Eps Decay every new episode. (not each step)
q_learning walkthrough. GATech OMSCS. (School policy prohibits our publishing code for honor policy)
@filmo
filmo / gist:e32bb82249c73e868ef3f23234966363
Created June 19, 2017 05:53
OMSCS GaTech walkthrough
Used Value Iteration as shown in class walkthrough. (School policy prohibits us showing code for honor policy.)
GATech OMSCS
philglau (master *) pr1 $ python submit.py gfserver
Tests that the client properly sends an ERROR response.: failed
Tests that the server properly sends an OK response and medium messag: failed
Tests that the server properly sends an OK response and a long messag: failed
Tests that the server properly sends an OK response and a short messa: failed
Tests that the server compiles: passed
Tests that the server properly handles a gfs_abort call.: passed
Tests that the server properly sends a FILE_NOT_FOUND response.: passed
Tests that the server properly handles a malformed request.: passed
Tests that the server properly handles a malformed request.: passed
philglau (master) pr1 $ vagrant up
Bringing machine 'default' up with 'virtualbox' provider...
==> default: Box 'ubuntu/xenial64' could not be found. Attempting to find and install...
default: Box Provider: virtualbox
default: Box Version: >= 0
==> default: Loading metadata for box 'ubuntu/xenial64'
default: URL: https://atlas.hashicorp.com/ubuntu/xenial64
==> default: Adding box 'ubuntu/xenial64' (v20160826.0.0) for provider: virtualbox
default: Downloading: https://atlas.hashicorp.com/ubuntu/boxes/xenial64/versions/20160826.0.0/providers/virtualbox.box
==> default: Successfully added box 'ubuntu/xenial64' (v20160826.0.0) for 'virtualbox'!
@filmo
filmo / gist:0821af03f01da8592e09921953b4ae5a
Last active August 13, 2016 03:11
Problem Installing cudarray with Anaconda Unbuntu 14.04
make
g++ -DCUDNN_ENABLED -O3 -fPIC -Wall -Wfatal-errors -D_FORCE_INLINES -I./include -I/usr/local/cuda-7.5/include -c -o src/nnet/conv_bc01_matmul.o src/nnet/conv_bc01_matmul.cpp
nvcc -gencode arch=compute_20,code=sm_20 -gencode arch=compute_20,code=compute_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_30,code=compute_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_35,code=compute_35 -O3 --compiler-options '-DCUDNN_ENABLED -O3 -fPIC -Wall -Wfatal-errors -D_FORCE_INLINES' --ftz=true --prec-div=false -prec-sqrt=false --fmad=true -I./include -I/usr/local/cuda-7.5/include -c -o src/nnet/pool_b01.o src/nnet/pool_b01.cu
g++ -DCUDNN_ENABLED -O3 -fPIC -Wall -Wfatal-errors -D_FORCE_INLINES -I./include -I/usr/local/cuda-7.5/include -c -o src/nnet/cudnn.o src/nnet/cudnn.cpp
nvcc -gencode arch=compute_20,code=sm_20 -gencode arch=compute_20,code=compute_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_30,code=compute_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_35,c
https://www.youtube.com/watch?v=T_yhf2HrPfQ
https://www.youtube.com/watch?v=x9_vmhE7yiI
https://www.youtube.com/watch?v=AC7RUSqoJ3k
https://www.youtube.com/watch?v=2va57vCvvYs
https://www.youtube.com/watch?v=vwyNzW2GTtM
https://www.youtube.com/watch?v=Ry7lVkgJ1UY
https://www.youtube.com/watch?v=agLkd2ka3Uk
https://www.youtube.com/watch?v=0M-qni5JPlg
https://www.youtube.com/watch?v=l5HRWFGa9Ps
https://www.youtube.com/watch?v=jwYHU5v2YnM