Last active
March 9, 2025 18:40
-
-
Save finbarrtimbers/98a03be83a8953a461f8b1d8716feebc to your computer and use it in GitHub Desktop.
Adam
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class SimpleAdam(torch.optim.Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8): | |
super().__init__(params, defaults={'lr': lr}) | |
self.state = {} | |
self.t = 0 | |
self.betas = betas | |
self.eps = eps | |
for group in self.param_groups: | |
for p in group['params']: | |
self.state[p] = { | |
'first_moment': torch.zeros_like(p.data), | |
'second_moment': torch.zeros_like(p.data), | |
} | |
# Step Method | |
def step(self): | |
self.t += 1 | |
for group in self.param_groups: | |
for p in group['params']: | |
assert p in self.state, f"{p} not in state" | |
first_moment = self.state[p]['first_moment'] | |
second_moment = self.state[p]['second_moment'] | |
first_moment = self.betas[0] * first_moment + (1 - self.betas[0]) * p.grad.data | |
second_moment = self.betas[1] * second_moment + (1 - self.betas[1]) * (p.grad.data ** 2) | |
self.state[p]['first_moment'] = first_moment | |
self.state[p]['second_moment'] = second_moment | |
first_moment_corrected = first_moment / (1 - self.betas[0] ** self.t) | |
second_moment_corrected = second_moment / (1 - self.betas[1] ** self.t) | |
p.data -= group['lr'] * first_moment_corrected / (second_moment_corrected.sqrt() + self.eps) | |
class SimpleAdamW(torch.optim.Optimizer): | |
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, | |
weight_decay: float = 1e-5): | |
super().__init__(params, defaults={'lr': lr}) | |
self.state = {} | |
self.t = 0 | |
self.betas = betas | |
self.eps = eps | |
self.weight_decay = weight_decay | |
for group in self.param_groups: | |
for p in group['params']: | |
self.state[p] = { | |
'first_moment': torch.zeros_like(p.data), | |
'second_moment': torch.zeros_like(p.data), | |
} | |
# Step Method | |
def step(self): | |
self.t += 1 | |
for group in self.param_groups: | |
for p in group['params']: | |
assert p in self.state, f"{p} not in state" | |
first_moment = self.state[p]['first_moment'] | |
second_moment = self.state[p]['second_moment'] | |
first_moment = self.betas[0] * first_moment + (1 - self.betas[0]) * p.grad.data | |
second_moment = self.betas[1] * second_moment + (1 - self.betas[1]) * (p.grad.data ** 2) | |
self.state[p]['first_moment'] = first_moment | |
self.state[p]['second_moment'] = second_moment | |
first_moment_corrected = first_moment / (1 - self.betas[0] ** self.t) | |
second_moment_corrected = second_moment / (1 - self.betas[1] ** self.t) | |
p.data -= group['lr'] * self.weight_decay * p.data | |
p.data -= group['lr'] * first_moment_corrected / (second_moment_corrected.sqrt() + self.eps) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment