Last active
April 18, 2019 12:45
-
-
Save finlay-liu/01703d963b7b5ede287c7eb71fa41059 to your computer and use it in GitHub Desktop.
mxnet-batch-predict.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
import os, sys, codecs | |
import glob | |
import numpy as np | |
import cv2 | |
import imagehash | |
from PIL import Image | |
Oxford_IMAGE_Path = '/export/home/liuyuzhong/dataset/Oxford-5k/oxbuild_images/' | |
Oxford_GT_Path = '/export/home/liuyuzhong/dataset/Oxford-5k/gt_files_170407/' | |
MXNet_Model_Path = '/export/home/liuyuzhong/work/mxnet_models/' | |
import mxnet as mx | |
ctx = mx.gpu(0) | |
sym, arg_params, aux_params = mx.model.load_checkpoint(MXNet_Model_Path + '/resnet-18', 0) | |
from collections import namedtuple | |
Batch = namedtuple('Batch', ['data']) | |
all_layers = sym.get_internals() | |
sym_inner = all_layers['stage4_unit2_conv2_output'] | |
mod = mx.mod.Module(symbol=sym_inner, label_names=None, context=ctx) | |
mod.bind(for_training=False, data_shapes=[('data', (1,3,224,224))]) | |
mod.set_params(arg_params, aux_params) | |
def predict_path(paths): | |
img_input = np.zeros((len(paths), 3, 1024, 768)) | |
for idx, path in enumerate(paths): | |
img = cv2.imread(path) | |
img = cv2.resize(img, (768, 1024), interpolation=cv2.INTER_CUBIC) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = np.swapaxes(img, 0, 2) | |
img = np.swapaxes(img, 1, 2) | |
img_input[idx] = img | |
mod.forward(Batch([mx.nd.array(img_input)])) | |
feat = mod.get_outputs()[0] | |
# max-pooling | |
feat = feat.max(2).max(-1) | |
return feat.asnumpy() | |
def chunks(l, n): | |
"""Yield successive n-sized chunks from l.""" | |
for i in range(0, len(l), n): | |
yield l[i:i + n] | |
img_paths = glob.glob(Oxford_IMAGE_Path + '*') | |
imgs_feat = [] | |
for path_batch in chunks(img_paths[:], 10): | |
# print('aaa') | |
imgs_feat.append(predict_path(path_batch)) | |
imgs_feat = np.concatenate(imgs_feat) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment