Skip to content

Instantly share code, notes, and snippets.

@fish8
Last active June 24, 2022 09:35
Show Gist options
  • Save fish8/c0db1ed0901732c84f5f35787dc804f7 to your computer and use it in GitHub Desktop.
Save fish8/c0db1ed0901732c84f5f35787dc804f7 to your computer and use it in GitHub Desktop.
start spark shell on cip cluster #cip #ss #spark
1.大集群
spark2.4.3_2.11
1.1 yarn模式
/opt/ubd/core/spark-2.4.3/bin/spark-shell --master yarn --queue ss_deploy --driver-memory 35g --num-executors 50 --executor-cores 4 --executor-memory 20g
1.2 local模式
/opt/ubd/core/spark-2.4.3/bin/spark-shell --queue ss_deploy --driver-memory 35g --num-executors 50 --executor-cores 4 --executor-memory 20g
spark2.4.2_2.12
/opt/ubd/core/spark-2.4.2/bin/spark-shell --queue ss_deploy --driver-memory 35g --num-executors 50 --executor-cores 4 --executor-memory 20g
2.花园集群
spark-3.1.2_2.12
/opt/ubd/core/spark-3.1.2-bin-hadoop3.2/bin/spark-shell --master yarn --queue default ---conf spark.executor.memory=21g --conf spark.executor.cores=3 --num-executors 80
/opt/ubd/core/spark-3.1.2-bin-hadoop3.2/bin/pyspark --queue default --conf spark.executor.memory=21g --conf spark.executor.cores=3 --num-executors 80
################################# old #####################################3
# 大集群
spark2-shell --master yarn --queue ss_deploy --executor-memory 18g --total-executor-cores 40 --executor-cores 6 --conf spark.default.parallelism=1024 --conf=spark.serializer=org.apache.spark.serializer.JavaSerializer
spark2-shell --master yarn-client --queue ss_deploy --conf spark.driver.memory=18G --executor-memory 18G --num-executors 40 --executor-cores 6 --conf spark.default.parallelism=2048
# daas
spark-shell --master yarn --queue ss_deploy --executor-memory 20g --num-executors 30 --executor-cores 2 --conf spark.default.parallelism=1024 --conf=spark.serializer=org.apache.spark.serializer.JavaSerializer
#garden spark3
/opt/ubd/core/spark-3.1.2-bin-hadoop3.2/bin/spark-shell --name ss_taozt --master yarn --conf spark.executor.memory=21g --conf spark.executor.cores=3 --num-executors 200 --conf spark.yarn.spark.executor.memoryOverhead=2g --conf spark.default.parallelism=1024 --conf spark.kryoserializer.buffer.max=512m --conf spark.driver.maxResultSize=5g --conf spark.driver.memory=20g --conf spark.network.timeout=1200s --conf spark.sql.shuffle.partitions=2048
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment