Last active
February 26, 2022 11:14
-
-
Save fjenett/64190426b2e5ad18a084a197bab19e69 to your computer and use it in GitHub Desktop.
RigNet Google Colab
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# --------------------------------------------------------------------------------------------------------- | |
# Name: quick_start.py | |
# Purpose: An easy-to-use demo. Also serves as an interface of the pipeline. | |
# RigNet Copyright 2020 University of Massachusetts | |
# RigNet is made available under General Public License Version 3 (GPLv3), or under a Commercial License. | |
# Please see the LICENSE README.txt file in the main directory for more information and instruction on using and licensing RigNet. | |
# --------------------------------------------------------------------------------------------------------- | |
import os | |
from sys import platform | |
import trimesh | |
import numpy as np | |
import open3d as o3d | |
import itertools as it | |
import pyvirtualdisplay | |
import torch | |
from torch_geometric.data import Data | |
from torch_geometric.utils import add_self_loops | |
from utils import binvox_rw | |
from utils.rig_parser import Skel, Info | |
from utils.tree_utils import TreeNode | |
from utils.io_utils import assemble_skel_skin | |
from utils.vis_utils import draw_shifted_pts, show_obj_skel, show_mesh_vox | |
from utils.cluster_utils import meanshift_cluster, nms_meanshift | |
from utils.mst_utils import increase_cost_for_outside_bone, primMST_symmetry, loadSkel_recur, inside_check, flip | |
from geometric_proc.common_ops import get_bones, calc_surface_geodesic | |
from geometric_proc.compute_volumetric_geodesic import pts2line, calc_pts2bone_visible_mat | |
from gen_dataset import get_tpl_edges, get_geo_edges | |
from mst_generate import sample_on_bone, getInitId | |
from run_skinning import post_filter | |
from models.GCN import JOINTNET_MASKNET_MEANSHIFT as JOINTNET | |
from models.ROOT_GCN import ROOTNET | |
from models.PairCls_GCN import PairCls as BONENET | |
from models.SKINNING import SKINNET | |
def normalize_obj(mesh_v): | |
dims = [max(mesh_v[:, 0]) - min(mesh_v[:, 0]), | |
max(mesh_v[:, 1]) - min(mesh_v[:, 1]), | |
max(mesh_v[:, 2]) - min(mesh_v[:, 2])] | |
scale = 1.0 / max(dims) | |
pivot = np.array([(min(mesh_v[:, 0]) + max(mesh_v[:, 0])) / 2, min(mesh_v[:, 1]), | |
(min(mesh_v[:, 2]) + max(mesh_v[:, 2])) / 2]) | |
mesh_v[:, 0] -= pivot[0] | |
mesh_v[:, 1] -= pivot[1] | |
mesh_v[:, 2] -= pivot[2] | |
mesh_v *= scale | |
return mesh_v, pivot, scale | |
def create_single_data(mesh_filaname): | |
""" | |
create input data for the network. The data is wrapped by Data structure in pytorch-geometric library | |
:param mesh_filaname: name of the input mesh | |
:return: wrapped data, voxelized mesh, and geodesic distance matrix of all vertices | |
""" | |
mesh = o3d.io.read_triangle_mesh(mesh_filaname) | |
mesh.compute_vertex_normals() | |
mesh_v = np.asarray(mesh.vertices) | |
mesh_vn = np.asarray(mesh.vertex_normals) | |
mesh_f = np.asarray(mesh.triangles) | |
mesh_v, translation_normalize, scale_normalize = normalize_obj(mesh_v) | |
mesh_normalized = o3d.geometry.TriangleMesh(vertices=o3d.utility.Vector3dVector(mesh_v), triangles=o3d.utility.Vector3iVector(mesh_f)) | |
o3d.io.write_triangle_mesh(mesh_filename.replace("_remesh.obj", "_normalized.obj"), mesh_normalized) | |
# vertices | |
v = np.concatenate((mesh_v, mesh_vn), axis=1) | |
v = torch.from_numpy(v).float() | |
# topology edges | |
print(" gathering topological edges.") | |
tpl_e = get_tpl_edges(mesh_v, mesh_f).T | |
tpl_e = torch.from_numpy(tpl_e).long() | |
tpl_e, _ = add_self_loops(tpl_e, num_nodes=v.size(0)) | |
# surface geodesic distance matrix | |
print(" calculating surface geodesic matrix.") | |
surface_geodesic = calc_surface_geodesic(mesh) | |
# geodesic edges | |
print(" gathering geodesic edges.") | |
geo_e = get_geo_edges(surface_geodesic, mesh_v).T | |
geo_e = torch.from_numpy(geo_e).long() | |
geo_e, _ = add_self_loops(geo_e, num_nodes=v.size(0)) | |
# batch | |
batch = torch.zeros(len(v), dtype=torch.long) | |
# voxel | |
if not os.path.exists(mesh_filaname.replace('_remesh.obj', '_normalized.binvox')): | |
if platform == "linux" or platform == "linux2": | |
os.system("./binvox -d 88 -pb " + mesh_filaname.replace("_remesh.obj", "_normalized.obj")) | |
elif platform == "win32": | |
os.system("binvox.exe -d 88 " + mesh_filaname.replace("_remesh.obj", "_normalized.obj")) | |
else: | |
raise Exception('Sorry, we currently only support windows and linux.') | |
with open(mesh_filaname.replace('_remesh.obj', '_normalized.binvox'), 'rb') as fvox: | |
vox = binvox_rw.read_as_3d_array(fvox) | |
data = Data(x=v[:, 3:6], pos=v[:, 0:3], tpl_edge_index=tpl_e, geo_edge_index=geo_e, batch=batch) | |
return data, vox, surface_geodesic, translation_normalize, scale_normalize | |
def predict_joints(input_data, vox, joint_pred_net, threshold, bandwidth=None, mesh_filename=None): | |
""" | |
Predict joints | |
:param input_data: wrapped input data | |
:param vox: voxelized mesh | |
:param joint_pred_net: network for predicting joints | |
:param threshold: density threshold to filter out shifted points | |
:param bandwidth: bandwidth for meanshift clustering | |
:param mesh_filename: mesh filename for visualization | |
:return: wrapped data with predicted joints, pair-wise bone representation added. | |
""" | |
data_displacement, _, attn_pred, bandwidth_pred = joint_pred_net(input_data) | |
y_pred = data_displacement + input_data.pos | |
y_pred_np = y_pred.data.cpu().numpy() | |
attn_pred_np = attn_pred.data.cpu().numpy() | |
y_pred_np, index_inside = inside_check(y_pred_np, vox) | |
attn_pred_np = attn_pred_np[index_inside, :] | |
y_pred_np = y_pred_np[attn_pred_np.squeeze() > 1e-3] | |
attn_pred_np = attn_pred_np[attn_pred_np.squeeze() > 1e-3] | |
# symmetrize points by reflecting | |
y_pred_np_reflect = y_pred_np * np.array([[-1, 1, 1]]) | |
y_pred_np = np.concatenate((y_pred_np, y_pred_np_reflect), axis=0) | |
attn_pred_np = np.tile(attn_pred_np, (2, 1)) | |
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np) | |
if bandwidth is None: | |
bandwidth = bandwidth_pred.item() | |
y_pred_np = meanshift_cluster(y_pred_np, bandwidth, attn_pred_np, max_iter=40) | |
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np) | |
Y_dist = np.sum(((y_pred_np[np.newaxis, ...] - y_pred_np[:, np.newaxis, :]) ** 2), axis=2) | |
density = np.maximum(bandwidth ** 2 - Y_dist, np.zeros(Y_dist.shape)) | |
density = np.sum(density, axis=0) | |
density_sum = np.sum(density) | |
y_pred_np = y_pred_np[density / density_sum > threshold] | |
attn_pred_np = attn_pred_np[density / density_sum > threshold][:, 0] | |
density = density[density / density_sum > threshold] | |
#img = draw_shifted_pts(mesh_filename, y_pred_np, weights=attn_pred_np) | |
pred_joints = nms_meanshift(y_pred_np, density, bandwidth) | |
pred_joints, _ = flip(pred_joints) | |
#img = draw_shifted_pts(mesh_filename, pred_joints) | |
# prepare and add new data members | |
pairs = list(it.combinations(range(pred_joints.shape[0]), 2)) | |
pair_attr = [] | |
for pr in pairs: | |
dist = np.linalg.norm(pred_joints[pr[0]] - pred_joints[pr[1]]) | |
bone_samples = sample_on_bone(pred_joints[pr[0]], pred_joints[pr[1]]) | |
bone_samples_inside, _ = inside_check(bone_samples, vox) | |
outside_proportion = len(bone_samples_inside) / (len(bone_samples) + 1e-10) | |
attr = np.array([dist, outside_proportion, 1]) | |
pair_attr.append(attr) | |
pairs = np.array(pairs) | |
pair_attr = np.array(pair_attr) | |
pairs = torch.from_numpy(pairs).float() | |
pair_attr = torch.from_numpy(pair_attr).float() | |
pred_joints = torch.from_numpy(pred_joints).float() | |
joints_batch = torch.zeros(len(pred_joints), dtype=torch.long) | |
pairs_batch = torch.zeros(len(pairs), dtype=torch.long) | |
input_data.joints = pred_joints | |
input_data.pairs = pairs | |
input_data.pair_attr = pair_attr | |
input_data.joints_batch = joints_batch | |
input_data.pairs_batch = pairs_batch | |
return input_data | |
def predict_skeleton(input_data, vox, root_pred_net, bone_pred_net, mesh_filename): | |
""" | |
Predict skeleton structure based on joints | |
:param input_data: wrapped data | |
:param vox: voxelized mesh | |
:param root_pred_net: network to predict root | |
:param bone_pred_net: network to predict pairwise connectivity cost | |
:param mesh_filename: meshfilename for debugging | |
:return: predicted skeleton structure | |
""" | |
root_id = getInitId(input_data, root_pred_net) | |
pred_joints = input_data.joints.data.cpu().numpy() | |
with torch.no_grad(): | |
connect_prob, _ = bone_pred_net(input_data, permute_joints=False) | |
connect_prob = torch.sigmoid(connect_prob) | |
pair_idx = input_data.pairs.long().data.cpu().numpy() | |
prob_matrix = np.zeros((len(input_data.joints), len(input_data.joints))) | |
prob_matrix[pair_idx[:, 0], pair_idx[:, 1]] = connect_prob.data.cpu().numpy().squeeze() | |
prob_matrix = prob_matrix + prob_matrix.transpose() | |
cost_matrix = -np.log(prob_matrix + 1e-10) | |
cost_matrix = increase_cost_for_outside_bone(cost_matrix, pred_joints, vox) | |
pred_skel = Info() | |
parent, key, root_id = primMST_symmetry(cost_matrix, root_id, pred_joints) | |
for i in range(len(parent)): | |
if parent[i] == -1: | |
pred_skel.root = TreeNode('root', tuple(pred_joints[i])) | |
break | |
loadSkel_recur(pred_skel.root, i, None, pred_joints, parent) | |
pred_skel.joint_pos = pred_skel.get_joint_dict() | |
#show_mesh_vox(mesh_filename, vox, pred_skel.root) | |
# this fails on Colab with virtual display | |
# try: | |
# img = show_obj_skel(mesh_filename, pred_skel.root) | |
# except: | |
# print("Visualization is not supported on headless servers. Please consider other headless rendering methods.") | |
return pred_skel | |
def calc_geodesic_matrix(bones, mesh_v, surface_geodesic, mesh_filename, subsampling=False): | |
""" | |
calculate volumetric geodesic distance from vertices to each bones | |
:param bones: B*6 numpy array where each row stores the starting and ending joint position of a bone | |
:param mesh_v: V*3 mesh vertices | |
:param surface_geodesic: geodesic distance matrix of all vertices | |
:param mesh_filename: mesh filename | |
:return: an approaximate volumetric geodesic distance matrix V*B, were (v,b) is the distance from vertex v to bone b | |
""" | |
if subsampling: | |
mesh0 = o3d.io.read_triangle_mesh(mesh_filename) | |
mesh0 = mesh0.simplify_quadric_decimation(3000) | |
o3d.io.write_triangle_mesh(mesh_filename.replace(".obj", "_simplified.obj"), mesh0) | |
mesh_trimesh = trimesh.load(mesh_filename.replace(".obj", "_simplified.obj")) | |
subsamples_ids = np.random.choice(len(mesh_v), np.min((len(mesh_v), 1500)), replace=False) | |
subsamples = mesh_v[subsamples_ids, :] | |
surface_geodesic = surface_geodesic[subsamples_ids, :][:, subsamples_ids] | |
else: | |
mesh_trimesh = trimesh.load(mesh_filename) | |
subsamples = mesh_v | |
origins, ends, pts_bone_dist = pts2line(subsamples, bones) | |
pts_bone_visibility = calc_pts2bone_visible_mat(mesh_trimesh, origins, ends) | |
pts_bone_visibility = pts_bone_visibility.reshape(len(bones), len(subsamples)).transpose() | |
pts_bone_dist = pts_bone_dist.reshape(len(bones), len(subsamples)).transpose() | |
# remove visible points which are too far | |
for b in range(pts_bone_visibility.shape[1]): | |
visible_pts = np.argwhere(pts_bone_visibility[:, b] == 1).squeeze(1) | |
if len(visible_pts) == 0: | |
continue | |
threshold_b = np.percentile(pts_bone_dist[visible_pts, b], 15) | |
pts_bone_visibility[pts_bone_dist[:, b] > 1.3 * threshold_b, b] = False | |
visible_matrix = np.zeros(pts_bone_visibility.shape) | |
visible_matrix[np.where(pts_bone_visibility == 1)] = pts_bone_dist[np.where(pts_bone_visibility == 1)] | |
for c in range(visible_matrix.shape[1]): | |
unvisible_pts = np.argwhere(pts_bone_visibility[:, c] == 0).squeeze(1) | |
visible_pts = np.argwhere(pts_bone_visibility[:, c] == 1).squeeze(1) | |
if len(visible_pts) == 0: | |
visible_matrix[:, c] = pts_bone_dist[:, c] | |
continue | |
for r in unvisible_pts: | |
dist1 = np.min(surface_geodesic[r, visible_pts]) | |
nn_visible = visible_pts[np.argmin(surface_geodesic[r, visible_pts])] | |
if np.isinf(dist1): | |
visible_matrix[r, c] = 8.0 + pts_bone_dist[r, c] | |
else: | |
visible_matrix[r, c] = dist1 + visible_matrix[nn_visible, c] | |
if subsampling: | |
nn_dist = np.sum((mesh_v[:, np.newaxis, :] - subsamples[np.newaxis, ...])**2, axis=2) | |
nn_ind = np.argmin(nn_dist, axis=1) | |
visible_matrix = visible_matrix[nn_ind, :] | |
os.remove(mesh_filename.replace(".obj", "_simplified.obj")) | |
return visible_matrix | |
def predict_skinning(input_data, pred_skel, skin_pred_net, surface_geodesic, mesh_filename, subsampling=False): | |
""" | |
predict skinning | |
:param input_data: wrapped input data | |
:param pred_skel: predicted skeleton | |
:param skin_pred_net: network to predict skinning weights | |
:param surface_geodesic: geodesic distance matrix of all vertices | |
:param mesh_filename: mesh filename | |
:return: predicted rig with skinning weights information | |
""" | |
global device, output_folder | |
num_nearest_bone = 5 | |
bones, bone_names, bone_isleaf = get_bones(pred_skel) | |
mesh_v = input_data.pos.data.cpu().numpy() | |
print(" calculating volumetric geodesic distance from vertices to bone. This step takes some time...") | |
geo_dist = calc_geodesic_matrix(bones, mesh_v, surface_geodesic, mesh_filename, subsampling=subsampling) | |
input_samples = [] # joint_pos (x, y, z), (bone_id, 1/D)*5 | |
loss_mask = [] | |
skin_nn = [] | |
for v_id in range(len(mesh_v)): | |
geo_dist_v = geo_dist[v_id] | |
bone_id_near_to_far = np.argsort(geo_dist_v) | |
this_sample = [] | |
this_nn = [] | |
this_mask = [] | |
for i in range(num_nearest_bone): | |
if i >= len(bones): | |
this_sample += bones[bone_id_near_to_far[0]].tolist() | |
this_sample.append(1.0 / (geo_dist_v[bone_id_near_to_far[0]] + 1e-10)) | |
this_sample.append(bone_isleaf[bone_id_near_to_far[0]]) | |
this_nn.append(0) | |
this_mask.append(0) | |
else: | |
skel_bone_id = bone_id_near_to_far[i] | |
this_sample += bones[skel_bone_id].tolist() | |
this_sample.append(1.0 / (geo_dist_v[skel_bone_id] + 1e-10)) | |
this_sample.append(bone_isleaf[skel_bone_id]) | |
this_nn.append(skel_bone_id) | |
this_mask.append(1) | |
input_samples.append(np.array(this_sample)[np.newaxis, :]) | |
skin_nn.append(np.array(this_nn)[np.newaxis, :]) | |
loss_mask.append(np.array(this_mask)[np.newaxis, :]) | |
skin_input = np.concatenate(input_samples, axis=0) | |
loss_mask = np.concatenate(loss_mask, axis=0) | |
skin_nn = np.concatenate(skin_nn, axis=0) | |
skin_input = torch.from_numpy(skin_input).float() | |
input_data.skin_input = skin_input | |
input_data.to(device) | |
skin_pred = skin_pred_net(input_data) | |
skin_pred = torch.softmax(skin_pred, dim=1) | |
skin_pred = skin_pred.data.cpu().numpy() | |
skin_pred = skin_pred * loss_mask | |
skin_nn = skin_nn[:, 0:num_nearest_bone] | |
skin_pred_full = np.zeros((len(skin_pred), len(bone_names))) | |
for v in range(len(skin_pred)): | |
for nn_id in range(len(skin_nn[v, :])): | |
skin_pred_full[v, skin_nn[v, nn_id]] = skin_pred[v, nn_id] | |
print(" filtering skinning prediction") | |
tpl_e = input_data.tpl_edge_index.data.cpu().numpy() | |
skin_pred_full = post_filter(skin_pred_full, tpl_e, num_ring=1) | |
skin_pred_full[skin_pred_full < np.max(skin_pred_full, axis=1, keepdims=True) * 0.35] = 0.0 | |
skin_pred_full = skin_pred_full / (skin_pred_full.sum(axis=1, keepdims=True) + 1e-10) | |
skel_res = assemble_skel_skin(pred_skel, skin_pred_full) | |
return skel_res | |
def tranfer_to_ori_mesh(filename_ori, filename_remesh, pred_rig): | |
""" | |
convert the predicted rig of remeshed model to the rig of the original model. | |
Just assign skinning weight based on nearest neighbor | |
:param filename_ori: original mesh filename | |
:param filename_remesh: remeshed mesh filename | |
:param pred_rig: predicted rig | |
:return: predicted rig for original mesh | |
""" | |
mesh_remesh = o3d.io.read_triangle_mesh(filename_remesh) | |
mesh_ori = o3d.io.read_triangle_mesh(filename_ori) | |
tranfer_rig = Info() | |
vert_remesh = np.asarray(mesh_remesh.vertices) | |
vert_ori = np.asarray(mesh_ori.vertices) | |
vertice_distance = np.sqrt(np.sum((vert_ori[np.newaxis, ...] - vert_remesh[:, np.newaxis, :]) ** 2, axis=2)) | |
vertice_raw_id = np.argmin(vertice_distance, axis=0) # nearest vertex id on the fixed mesh for each vertex on the remeshed mesh | |
tranfer_rig.root = pred_rig.root | |
tranfer_rig.joint_pos = pred_rig.joint_pos | |
new_skin = [] | |
for v in range(len(vert_ori)): | |
skin_v = [v] | |
v_nn = vertice_raw_id[v] | |
skin_v += pred_rig.joint_skin[v_nn][1:] | |
new_skin.append(skin_v) | |
tranfer_rig.joint_skin = new_skin | |
return tranfer_rig | |
if __name__ == '__main__': | |
input_folder = "quick_start/" | |
# downsample_skinning is used to speed up the calculation of volumetric geodesic distance | |
# and to save cpu memory in skinning calculation. | |
# Change to False to be more accurate but less efficient. | |
downsample_skinning = True | |
# load all weights | |
print("loading all networks...") | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
jointNet = JOINTNET() | |
jointNet.to(device) | |
jointNet.eval() | |
jointNet_checkpoint = torch.load('checkpoints/gcn_meanshift/model_best.pth.tar') | |
jointNet.load_state_dict(jointNet_checkpoint['state_dict']) | |
print(" joint prediction network loaded.") | |
rootNet = ROOTNET() | |
rootNet.to(device) | |
rootNet.eval() | |
rootNet_checkpoint = torch.load('checkpoints/rootnet/model_best.pth.tar') | |
rootNet.load_state_dict(rootNet_checkpoint['state_dict']) | |
print(" root prediction network loaded.") | |
boneNet = BONENET() | |
boneNet.to(device) | |
boneNet.eval() | |
boneNet_checkpoint = torch.load('checkpoints/bonenet/model_best.pth.tar') | |
boneNet.load_state_dict(boneNet_checkpoint['state_dict']) | |
print(" connection prediction network loaded.") | |
skinNet = SKINNET(nearest_bone=5, use_Dg=True, use_Lf=True) | |
skinNet_checkpoint = torch.load('checkpoints/skinnet/model_best.pth.tar') | |
skinNet.load_state_dict(skinNet_checkpoint['state_dict']) | |
skinNet.to(device) | |
skinNet.eval() | |
print(" skinning prediction network loaded.") | |
# Here we provide 16~17 examples. For best results, we will need to override the learned bandwidth and its associated threshold | |
# To process other input characters, please first try the learned bandwidth (0.0429 in the provided model), and the default threshold 1e-5. | |
# We also use these two default parameters for processing all test models in batch. | |
#model_id, bandwidth, threshold = "smith", None, 1e-5 | |
model_id, bandwidth, threshold = "17872", 0.045, 0.75e-5 | |
#model_id, bandwidth, threshold = "8210", 0.05, 1e-5 | |
#model_id, bandwidth, threshold = "8330", 0.05, 0.8e-5 | |
#model_id, bandwidth, threshold = "9477", 0.043, 2.5e-5 | |
#model_id, bandwidth, threshold = "17364", 0.058, 0.3e-5 | |
#model_id, bandwidth, threshold = "15930", 0.055, 0.4e-5 | |
#model_id, bandwidth, threshold = "8333", 0.04, 2e-5 | |
#model_id, bandwidth, threshold = "8338", 0.052, 0.9e-5 | |
#model_id, bandwidth, threshold = "3318", 0.03, 0.92e-5 | |
#model_id, bandwidth, threshold = "15446", 0.032, 0.58e-5 | |
#model_id, bandwidth, threshold = "1347", 0.062, 3e-5 | |
#model_id, bandwidth, threshold = "11814", 0.06, 0.6e-5 | |
#model_id, bandwidth, threshold = "2982", 0.045, 0.3e-5 | |
#model_id, bandwidth, threshold = "2586", 0.05, 0.6e-5 | |
#model_id, bandwidth, threshold = "8184", 0.05, 0.4e-5 | |
#model_id, bandwidth, threshold = "9000", 0.035, 0.16e-5 | |
# create data used for inferece | |
print("creating data for model ID {:s}".format(model_id)) | |
mesh_filename = os.path.join(input_folder, '{:s}_remesh.obj'.format(model_id)) | |
pyvirtualdisplay.Display(visible=False, size=(1400, 900)).start() # virtual display for binvox | |
data, vox, surface_geodesic, translation_normalize, scale_normalize = create_single_data(mesh_filename) | |
data.to(device) | |
print("predicting joints") | |
data = predict_joints(data, vox, jointNet, threshold, bandwidth=bandwidth, | |
mesh_filename=mesh_filename.replace("_remesh.obj", "_normalized.obj")) | |
data.to(device) | |
print("predicting connectivity") | |
pyvirtualdisplay.Display(visible=False, size=(1400, 900)).start() # virtual display | |
pred_skeleton = predict_skeleton(data, vox, rootNet, boneNet, | |
mesh_filename=mesh_filename.replace("_remesh.obj", "_normalized.obj")) | |
print("predicting skinning") | |
pyvirtualdisplay.Display(visible=False, size=(1400, 900)).start() # virtual display | |
pred_rig = predict_skinning(data, pred_skeleton, skinNet, surface_geodesic, | |
mesh_filename.replace("_remesh.obj", "_normalized.obj"), | |
subsampling=downsample_skinning) | |
# here we reverse the normalization to the original scale and position | |
pred_rig.normalize(scale_normalize, -translation_normalize) | |
print("Saving result") | |
if True: | |
# here we use original mesh tesselation (without remeshing) | |
mesh_filename_ori = os.path.join(input_folder, '{:s}_ori.obj'.format(model_id)) | |
pred_rig = tranfer_to_ori_mesh(mesh_filename_ori, mesh_filename, pred_rig) | |
pred_rig.save(mesh_filename_ori.replace('.obj', '_rig.txt')) | |
else: | |
# here we use remeshed mesh | |
pred_rig.save(mesh_filename.replace('.obj', '_rig.txt')) | |
print("Done!") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment