Created
December 11, 2012 21:55
-
-
Save fkuehnel/4262596 to your computer and use it in GitHub Desktop.
Haskell module for Clifford Algebra tensor representations, and a Geometric Algebra module utilizing the tensor representation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- credit goes to sigfpe | |
{-# LANGUAGE MultiParamTypeClasses | |
,TemplateHaskell | |
,GeneralizedNewtypeDeriving | |
,DeriveFunctor | |
,FunctionalDependencies | |
,FlexibleInstances | |
,UndecidableInstances | |
,FlexibleContexts | |
,Rank2Types #-} | |
{-# OPTIONS_GHC -fno-warn-name-shadowing -fno-warn-missing-methods #-} | |
module Clifford where | |
import Language.Haskell.TH | |
-- basic components of Clifford algebras | |
newtype I r = I r deriving (Eq, Ord, Read, Num, Real) | |
instance (Show r) => Show (I r) where | |
show (I r) = ',' :show r | |
-- Complex numbers form a normed commutative division algebra | |
data Complex a = C a a deriving (Eq,Show) | |
-- very useful to have a functor to map over (we can do this via derive) | |
instance Functor Complex where | |
fmap f (C a b) = C (f a) (f b) | |
-- 4 multiplications | |
instance Num a => Num (Complex a) where | |
fromInteger a = C (fromInteger a) 0 | |
(C a b)+(C a' b') = C (a+a') (b+b') | |
(C a b)-(C a' b') = C (a-a') (b-b') | |
(C a b)*(C a' b') = C (a*a'-b*b') (a*b'+b*a') | |
data Split a = S a a deriving (Eq,Show,Functor) | |
-- 2 multiplications | |
instance Num a => Num (Split a) where | |
fromInteger a = S (fromInteger a) (fromInteger a) | |
(S a b)+(S a' b') = S (a+a') (b+b') | |
(S a b)-(S a' b') = S (a-a') (b-b') | |
(S a b)*(S a' b') = S (a*a') (b*b') | |
data Matrix a = M a a a a deriving (Eq,Show,Functor) | |
-- 8 multiplications | |
instance Num a => Num (Matrix a) where | |
fromInteger a = M (fromInteger a) 0 0 (fromInteger a) | |
(M a b c d)+(M a' b' c' d') = M (a+a') (b+b') | |
(c+c') (d+d') | |
(M a b c d)-(M a' b' c' d') = M (a-a') (b-b') | |
(c-c') (d-d') | |
(M a b c d)*(M a' b' c' d') = M (a*a'+b*c') (a*b'+b*d') | |
(c*a'+d*c') (c*b'+d*d') | |
-- Quaternions form a normed non-commutative division algebra | |
-- Quaternions have injective homomorphisms to C(2), R(4) | |
data Quaternion a = Q a a a a deriving (Eq,Show,Functor) | |
-- 16 multiplications | |
instance Num a => Num (Quaternion a) where | |
fromInteger a = Q (fromInteger a) 0 0 0 | |
(Q a b c d)+(Q a' b' c' d') = Q (a+a') (b+b') | |
(c+c') (d+d') | |
(Q a b c d)-(Q a' b' c' d') = Q (a-a') (b-b') | |
(c-c') (d-d') | |
(Q a b c d)*(Q a' b' c' d') = Q (a*a'-b*b'-c*c'-d*d') | |
(a*b'+b*a'+c*d'-d*c') | |
(a*c'+c*a'+d*b'-b*d') | |
(a*d'+d*a'+b*c'-c*b') | |
-- explicit isomorphisms (can be read in either direction) | |
-- convert 8 times 2 multiplications into 2 times 8 (trivial mapping) | |
ms2sm :: (Num a) => Matrix (Split a) -> Split (Matrix a) | |
ms2sm (M (S a b) (S c d) (S f g) (S h j)) = | |
S (M a c f h) (M b d g j) | |
-- convert 8 times 16 multiplications into 16 times 8 (trivial mapping) | |
mq2qm :: (Num a) => Matrix (Quaternion a) -> Quaternion (Matrix a) | |
mq2qm (M (Q a b c d) (Q f g h j) (Q k l m n) (Q p q r s) ) = | |
Q (M a f k p) | |
(M b g l q) | |
(M c h m r) | |
(M d j n s) | |
-- convert 4 times 4 multiplications into 2 times 4!! | |
-- C (C a b) (C c d) isomorph to 1xC a b + IxC c d | |
cc2sc :: (Num a) => Complex (Complex a) -> Split (Complex a) | |
cc2sc (C (C a b) (C c d) ) = | |
S (C (a+d) (c-b)) | |
(C (a-d) (c+b)) | |
-- convert 4 times 16 multiplications into 8 times 4!! | |
cq2mc :: (Num a) => Complex (Quaternion a) -> Matrix (Complex a) | |
cq2mc (C (Q a b c d) (Q f g h l)) = | |
M (C (a+g) (f-b)) | |
(C (l+c) (-h-d)) | |
(C (l-c) (h-d)) | |
(C (a-g) (f+b)) | |
-- convert 16 times 16 multiplications into 8 times 8!! | |
qq2mm :: (Num a) => Quaternion (Quaternion a) -> Matrix (Matrix a) | |
qq2mm (Q (Q a b c d) (Q f g h j) (Q k l m n) (Q p q r s)) = | |
M (M (a+g+m+s) (b-f-n+r) (f-b-n+r) (a+g-m-s)) | |
(M (c+j-k-q) (d-h+l-p) (h-d+l-p) (c+j+k+q)) | |
(M (j-c+k-q) (d+h+l+p) (-d-h+l+p) (j-c-k+q)) | |
(M (a-g+m-s) (-b-f+n+r) (b+f+n+r) (a-g-m+s)) | |
bott :: Num a => Quaternion (Matrix (Quaternion (Matrix a))) -> Matrix (Matrix (Matrix (Matrix a))) | |
bott = qq2mm . fmap mq2qm | |
-- some educational embeddings from splits, complex and quaternion numbers | |
-- to the matrix algebra over the real numbers | |
s2m :: (Num a) => Split a -> Matrix a | |
s2m (S a b) = M (a+b) 0 0 (a-b) -- Jordan form | |
c2m :: (Num a) => Complex a -> Matrix a | |
c2m (C a b) = M a (-b) b a | |
q2mm :: (Num a) => Quaternion a -> Matrix (Matrix a) | |
q2mm (Q a b c d) = | |
M (M a b (-b) a) | |
(M c d (-d) c) | |
(M (-c) d (-d) c) | |
(M a (-b) b a) | |
class Clifford b r | b -> r where | |
one :: r -> b | |
e_ :: Int -> r -> b -- enumerate grade 0 vectors | |
b_ :: Int -> r -> b -- enumerate multi-vectors b0 .. b2^(p+q)-1 | |
gft :: [r] -> (b,[r])-- fast forward generalized fourier transform | |
fmapI :: (r -> r) -> b -> b -- map over the real numbers | |
instance Clifford (I r) r where | |
one a = I a | |
e_ _ _ = error "" | |
b_ 0 a = I a | |
b_ _ _ = error "" | |
gft [] = error "" | |
gft (a:as) = (I a, as) | |
fmapI f (I r) = I (f r) | |
instance (Num b,Clifford b r) => Clifford (Complex b) r where | |
one a = C (one a) 0 | |
e_ 1 a = C 0 (one a) | |
b_ 0 a = C (one a) 0 | |
b_ n a | |
| hi == 0 = C (b_ lo a) 0 | |
| otherwise = C 0 (b_ lo a) | |
where hi = n `mod` 2 | |
lo = n `div` 2 | |
gft as = let (a, as1) = gft as | |
(b, as2) = gft as1 | |
in (C a b, as2) | |
fmapI f (C a b) = C (fmapI f a) (fmapI f b) | |
instance (Num b,Clifford b r) => Clifford (Split b) r where | |
one a = let b = one a in S b b | |
e_ 1 a = let b = one a in S b (-b) | |
b_ 0 a = let b = one a in S b b | |
b_ n a | |
| hi == 0 = let b = (b_ lo a) in S b b | |
| otherwise = let b = (b_ lo a) in S b (-b) | |
where hi = n `mod` 2 | |
lo = n `div` 2 | |
gft as = let (a, as1) = gft as | |
(b, as2) = gft as1 | |
in (S (a+b) (a-b), as2) | |
fmapI f (S a b) = S (fmapI f a) (fmapI f b) | |
instance (Num b,Clifford b r) => Clifford (Quaternion b) r where | |
one a = Q (one a) 0 0 0 | |
e_ 1 a = Q 0 (one a) 0 0 | |
e_ 2 a = Q 0 0 (one a) 0 | |
e_ n a = Q 0 0 0 (e_ (n-2) a) | |
b_ 0 a = Q (one a) 0 0 0 | |
b_ n a | |
| hi == 0 = Q (b_ lo a) 0 0 0 | |
| hi == 1 = Q 0 (b_ lo a) 0 0 | |
| hi == 2 = Q 0 0 (b_ lo a) 0 | |
| otherwise = Q 0 0 0 (b_ lo a) | |
where hi = n `mod` 4 | |
lo = n `div` 4 | |
gft as = let (a, as1) = gft as | |
(b, as2) = gft as1 | |
(c, as3) = gft as2 | |
(d, as4) = gft as3 | |
in (Q a b c d, as4) | |
fmapI f (Q a b c d) = Q (fmapI f a) (fmapI f b) (fmapI f c) (fmapI f d) | |
instance (Num b,Clifford b r) => Clifford (Matrix b) r where | |
one a = let b = one a in M b 0 0 b | |
e_ 1 a = let b = one a in M (-b) 0 0 b | |
e_ 2 a = let b = one a in M 0 b (-b) 0 | |
e_ n a = let b = e_ (n-2) a in M 0 b b 0 | |
b_ 0 a = let b = one a in M b 0 0 b | |
b_ n a | |
| hi == 0 = let b = (b_ lo a) in M b 0 0 b | |
| hi == 1 = let b = (b_ lo a) in M (-b) 0 0 b | |
| hi == 2 = let b = (b_ lo a) in M 0 b (-b) 0 | |
| otherwise = let b = (b_ lo a) in M 0 b b 0 | |
where hi = n `mod` 4 | |
lo = n `div` 4 | |
gft as = let (a, as1) = gft as | |
(b, as2) = gft as1 | |
(c, as3) = gft as2 | |
(d, as4) = gft as3 | |
in (M (a-b) (c+d) (d-c) (a+b), as4) | |
fmapI f (M a b c d) = M (fmapI f a) (fmapI f b) (fmapI f c) (fmapI f d) | |
-- a nice application of Template Haskell: declare types at will | |
cliffpq :: Int -> Int -> Name -> Q Type | |
cliffpq 0 0 k = do return $ AppT (ConT ''I) (ConT k) | |
cliffpq 0 1 k = [t| Complex $(cliffpq 0 0 k) |] | |
cliffpq 1 0 k = [t| Split $(cliffpq 0 0 k) |] | |
cliffpq p q k | |
| p > 0 && q > 0 = [t| Matrix $(cliffpq (p-1) (q-1) k) |] | |
| p >= 2 && q == 0 = [t| Matrix $(cliffpq q (p-2) k) |] | |
| p == 0 && q >= 2 = [t| Quaternion $(cliffpq (q-2) p k ) |] | |
-- Geometric Algebra can be defined as | |
-- one 1.5 :: $(cliffpq 3 0 ''Float) | |
-- here Haskell starts to 'suck' a bit: | |
-- I can't do | |
-- type GA = $(cliffpq 3 0 ''Float) | |
-- because the type declaration phase comes before the | |
-- code splicing phase... (and we have a vicious cycle) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
-- Copyright 2011, Frank Kuehnel | |
-- Licensed under the Apache License, Version 2.0 (the "License"); | |
-- you may not use this file except in compliance with the License. | |
-- You may obtain a copy of the License at | |
-- http://www.apache.org/licenses/LICENSE-2.0 | |
-- Unless required by applicable law or agreed to in writing, software | |
-- distributed under the License is distributed on an "AS IS" BASIS, | |
-- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
-- See the License for the specific language governing permissions and | |
-- limitations under the License | |
-- Examples | |
-- e1 = 1.0 `e` [1] :: GA | |
-- e2 = 1.0 `e` [2] :: GA | |
-- e3 = 1.0 `e` [3] :: GA | |
-- x = e1 ^* e2 | |
-- inner product | |
-- x .*. e1 | |
-- inner product with a scalar | |
-- x .*. 2.0 | |
-- full inner product | |
-- x .*. x | |
-- x .*. (e2 ^* e3) -> 0 | |
-- (e1*e2) * (e1*e3) -> -e23 | |
-- (e1*e2) ^* (e1*e3) -> 0 | |
{-# LANGUAGE MultiParamTypeClasses | |
,FunctionalDependencies | |
,GeneralizedNewtypeDeriving | |
,FlexibleInstances | |
,UndecidableInstances | |
,TypeFamilies #-} | |
module GAlgebra (GA, cl,(*#),(^*),(.*),(*.),(.*.),(!*),x,e,zero, | |
invGFT, fwdGFT, grade, grades, minmaxgrd, maxgrd, mingrd, | |
isScalar, isVector, isBivector, rev, invol, norm, normmax, numTrans) where | |
import Data.List | |
import qualified Data.IntMap as IM | |
import qualified Data.Map as Map | |
import Numeric | |
import Control.Monad (msum) | |
import Language.Haskell.TH | |
import Clifford | |
-- wish one could somehow parametrize GA with p q? | |
newtype GA = GA {cl :: $(cliffpq 4 1 ''Double)} deriving (Eq,Num) | |
-- We need a guide to the Geometric Algebra | |
-- map from e(-q)..e(-1), e(1)..e(p) to GA (b_ idx _) | |
gaIndexVec2BasisMap = case (nameBasis (4,1)) of | |
Just a -> a | |
Nothing -> [] | |
-- map from GA (b_ idx _) grade 1 vectors to e(-q)..e(-1), e(1)..e(p) | |
gaBasis2IndexVecMap = map (\(a,b) -> (b,a)) gaIndexVec2BasisMap | |
-- map from GA (b_ idx _) for all multivectors to the index set (frame), i.e. e(-2,-1,3,4) | |
-- Conceptually, we need to map the power set of the grade 1 vectors to the basis in GA | |
-- Efficiently, I use a neat trick using the list Monad's tensoring capabilities, similar to: | |
powerSet f = ffilterM (const [True, False]) f | |
-- generate a quick lookup method to map from fourier index to index frame set | |
gaBasis2IndexSetMap = IM.fromList $ zipWith (\(i,s) nl -> (i, (nl, s<0))) (bases ++ [(0,1)]) names | |
where | |
-- efficiently generate all non 0-grade multivectors | |
mvecs = init $ powerSet (*) $ map (\(i,_) -> GA (b_ i 1)) gaBasis2IndexVecMap | |
-- let's figure out what fourier index the multivector corresponds to | |
bases = map (head . (filter ((/=0) . snd)) . invGFT . cl . head) mvecs | |
-- by convention, frame set names for multivectors | |
names = powerSet const $ map fst gaIndexVec2BasisMap | |
-- we could certainly play with graded maps! | |
gaIndexSet2BasisMap = Map.fromList $ map (\(k,(n,s)) -> (n,(k,s))) $ IM.assocs gaBasis2IndexSetMap | |
-- a set of grade filters to be applied after invGFT | |
gaBaseGrades = | |
let baseIds = map fst $ invGFT $ cl $ GA (one 1) | |
in case mapM (\bi -> gradeOf bi) baseIds of | |
Nothing -> [] | |
Just grades -> grades | |
where | |
gradeOf i = case IM.lookup i gaBasis2IndexSetMap of | |
Nothing -> Nothing | |
Just ([], sgn) -> Just 0 | |
Just (l@(s:ss),sgn) -> Just $ length l | |
instance Show GA where | |
show (GA cl) = case decode cl gaBasis2IndexSetMap of | |
Nothing -> "too few basis vectors! Wrong map?" | |
Just ncpoly -> show (NP ncpoly) | |
instance Read GA where | |
readsPrec _ p = case readSigned readFloat p of | |
[] -> getBasis p 1 | |
[(a,pn)] -> getBasis pn a | |
where getBasis p val = | |
case readBasis p of | |
[] -> [] | |
[(E [], p)] -> [(GA (b_ 0 val),p)] | |
[(E (b:bs), p)] -> [(val `e` (b:bs),p)] | |
instance Fractional GA where | |
fromRational r = GA (one $ fromRational r) | |
-- general inverse of a multivector may not exist in some cases | |
recip g | |
| (0,0) == (nm,nx) = GA (one $ recip $ scalar g) | |
| 1 == (nx) = let ig = invol g -- unique inverse may not exist on a null cone | |
in (recip $ scalar $ g*ig) !* ig | |
| isScalar (g*rg) = let normf = recip $ scalar $ g*rg -- strictly works for versors | |
in normf !* rg | |
| isScalar (g*cjg) = let normf = recip $ scalar $ g*cjg -- sometimes referred to as Lounesto inverse | |
in normf !* rg | |
| otherwise = g -- nonsense result! | |
where (nm,nx) = minmaxgrd g | |
rg = rev g | |
cjg = invol rg -- try clifford conjugation | |
-- very faintly inspired by Conal Elliott's vector space | |
class MultiVectorSpace mv where | |
zero :: mv | |
(!*) :: Double -> mv -> mv -- multiply scalar with a multivector | |
(^*) :: mv -> mv -> mv -- multivector exterior product | |
(.*.) :: mv -> mv -> mv -- multivector symmetric inner product | |
(.*) :: mv -> mv -> mv -- multivector left contraction | |
(*.) :: mv -> mv -> mv -- multivector right contraction | |
(*#) :: mv -> mv -> Double -- multivector scalar product (return grade 0 == scalar) | |
x :: mv -> mv -> mv -- commutator product | |
maxgrd :: mv -> Int -- maximum grade of multivector | |
mingrd :: mv -> Int -- minimum grade of multivector (>=0) | |
minmaxgrd :: mv -> (Int, Int) | |
grades :: mv -> [Int] -- list of grades in multivector | |
grade :: Int -> mv -> mv -- select grade of multivector | |
gradeiGFT :: Int -> [(Int,Double)] -> mv | |
scalar :: mv -> Double -- extract scalar from multivector | |
fwdGFT :: [(Int,Double)] -> mv -- forward fast fourier transform | |
rev :: mv -> mv -- multivector reversion | |
invol :: mv -> mv -- multivector involution | |
e :: Double -> [Int] -> mv -- convert from index set notation | |
-- normed vector space (various norms) | |
norm :: Int -> mv -> Double | |
normmax :: mv -> Double | |
-- some utility functions | |
isScalar :: mv -> Bool | |
isVector :: mv -> Bool | |
isBivector :: mv -> Bool | |
instance MultiVectorSpace GA where | |
zero = GA (one 0) | |
a !* v = GA (fmapI (*a) $ cl v) -- believe this is an efficient operation | |
v ^* w = foldl' (+) zero outer | |
where (iv,iw) = (invGFT $ cl v, invGFT $ cl w) | |
(gv,gw) = (gradesiGFT iv,gradesiGFT iw) | |
outer = [grade (k+l) (vb*wb) | |
| k<-gv, l<-gw, let vb=gradeiGFT k iv, let wb = gradeiGFT l iw] | |
v .*. w = foldl' (+) zero outer | |
where (iv,iw) = (invGFT $ cl v, invGFT $ cl w) | |
(gv,gw) = (gradesiGFT iv,gradesiGFT iw) | |
outer = [grade (abs (k-l)) (vb*wb) | |
| k<-gv, l<-gw, let vb=gradeiGFT k iv, let wb = gradeiGFT l iw] | |
v .* w = foldl' (+) zero outer | |
where (iv,iw) = (invGFT $ cl v, invGFT $ cl w) | |
(gv,gw) = (gradesiGFT iv,gradesiGFT iw) | |
outer = [grade (l-k) (vb*wb) | |
| k<-gv, l<-gw,l>=k, let vb=gradeiGFT k iv, let wb = gradeiGFT l iw] | |
v *. w = foldl' (+) zero outer | |
where (iv,iw) = (invGFT $ cl v, invGFT $ cl w) | |
(gv,gw) = (gradesiGFT iv, gradesiGFT iw) | |
outer = [grade (k-l) (vb*wb) | |
| k<-gv, l<-gw,k>=l, let vb=gradeiGFT k iv, let wb = gradeiGFT l iw] | |
v *# w = scalar (v*w) | |
v `x` w = 0.5 !* (v*w - w*v) | |
isScalar g = 0 == maxgrd g | |
isVector g = (1,1) == minmaxgrd g | |
isBivector g = (2,2) == minmaxgrd g | |
normmax (GA c) = maximum $ map (abs . snd) (invGFT c) | |
norm _ (GA c) = sum $ map (abs . snd) (invGFT c) | |
maxgrd = snd . minmaxgrd | |
mingrd = fst . minmaxgrd | |
minmaxgrd g = case grades g of | |
[] -> (0,0) | |
l -> (head l, last l) | |
grades (GA c) = gradesiGFT (invGFT c) | |
scalar (GA c) = (snd . head) (invGFT c) | |
grade n (GA c) = gradeiGFT n (invGFT c) | |
gradeiGFT n ic = let res = zipWith (\g (i,v) -> if (g==n) then (i,v) else (i,0)) gaBaseGrades ic | |
in fwdGFT res | |
fwdGFT [] = GA (one 0) | |
fwdGFT l@(a:as) = GA (fst $ gft $ map snd l) | |
rev (GA c) = fwdGFT reverted | |
where reverted = zipWith revert gaBaseGrades (invGFT c) | |
revert = (\g (i,v) -> if even (g `div` 2) then (i,v) else (i,(-v))) | |
invol (GA c) = fwdGFT reverted | |
where reverted = zipWith revert gaBaseGrades (invGFT c) | |
revert = (\g (i,v) -> if even g then (i,v) else (i,(-v))) | |
v `e` [n] = case lookup n gaIndexVec2BasisMap of | |
Just i -> GA (b_ i v) | |
Nothing -> GA (one v) | |
v `e` l@(n:ns) = case Map.lookup norml gaIndexSet2BasisMap of | |
Just (i,sgn) -> GA (b_ i (normv sgn)) | |
Nothing -> GA (one v) | |
where (norml,sgn2) = nubPairB $ sort l | |
normv sgn1 = if sgn1 `xor` sgn2 `xor` (odd $ numTrans l) then (-v) else v | |
a `xor` b = a && not b || not a && b | |
-- helper function | |
gradesiGFT :: [(Int,Double)] -> [Int] | |
gradesiGFT ic = nub $ map fst $ sort $ filter ((/=0).snd) res | |
where res = zipWith (\g (i,v) -> (g,v)) gaBaseGrades ic | |
-- base for multivector (tensor algebra in general) (inspired by David Amos) | |
newtype Basis = E [Int] deriving (Eq,Ord) | |
instance Show Basis where | |
show (E []) = " " | |
show (E i) = 'e': show i | |
instance Read Basis where | |
readsPrec _ = readBasis | |
readBasis :: ReadS Basis | |
readBasis [] = [(E [], [])] -- assume a scalar | |
readBasis (v:vs) | |
| v == ' ' = readBasis vs | |
| v == 'e' = if (not $ null basis) then [(E basis, rest)] else [] | |
| otherwise = [] | |
where parsed = readList vs :: [([Int], String)] | |
(basis, rest) = if (not $ null parsed) then head parsed else ([], vs) | |
newtype NPoly r v = NP [(v,r)] | |
instance (Show r, Eq v, Show v) => Show (NPoly r v) where | |
show (NP []) = "0" | |
show (NP ts) = | |
let (c:cs) = concatMap showTerm ts | |
in if c == '+' then cs else c:cs | |
where showTerm (m,a) = | |
case show a of | |
"1" -> "+" ++ show m | |
"-1" -> "-" ++ show m | |
cs -> showCoeff cs ++ show m | |
showCoeff (c:cs) = if any (`elem` ['+','-']) cs | |
then "+(" ++ c:cs ++ ")" | |
else if c == '-' then c:cs else '+':c:cs | |
-- Clifford Algebra Transformations: | |
-- invGFT implements a fast inverse generalized fourier transform | |
-- on the Clifford Algebra. This is rather close to the definition | |
-- in "A generalized FFT for Clifford algebras", Paul Leopardi | |
-- (wanted to work with type families here, for specialization | |
-- between integer and floating point case! | |
-- My experimentation wasn't successful, type equivalence in superclass isn't | |
-- implemented in GHC till Milestone 7.2.x!) | |
class CliffordT b r | b -> r where | |
invGFT :: b -> [(Int, r)] | |
instance CliffordT (I r) r where | |
invGFT (I r) = [(0,r)] | |
instance (Num b,Clifford b r,CliffordT b r) => CliffordT (Complex b) r where | |
invGFT (C a b) = do (id1,elem) <- zip [0..] [a,b] | |
(id2, v) <- invGFT elem | |
return (id1+2*id2, v) | |
instance (Num b, CliffordT b Double) => CliffordT (Split b) Double where | |
invGFT (S a b) = do (idx1,elem) <- zip [0..] [a+b,a-b] | |
(idx2, v) <- invGFT elem | |
return (idx1+2*idx2, v / 2.0) | |
instance (Num b,Clifford b r,CliffordT b r) => CliffordT (Quaternion b) r where | |
invGFT (Q a b c d) = do (id1,elem) <- zip [0..] [a,b,c,d] | |
(id2, v) <- invGFT elem | |
return (id1+4*id2, v) | |
instance (Num b,Clifford b Double,CliffordT b Double) => CliffordT (Matrix b) Double where | |
invGFT (M a b c d) = do (idx1,elem) <- zip [0..] [a+d,d-a,b-c,b+c] | |
(idx2, v) <- invGFT elem | |
return (idx1+4*idx2, v / 2.0) | |
-- make sense of the index value pairs of the fourier transformed | |
-- Clifford Algebra via an index map (only use non-zero elements) | |
decode cl idMap = let nonzeros = filter ((/=) 0 . snd) $ invGFT cl | |
in case mapM (\(id,v) -> IM.lookup id idMap) nonzeros of | |
Nothing -> Nothing | |
Just frames -> Just $ zipWith (\(b,s) (id,v) ->(E b, adjSgn s v)) frames nonzeros | |
where adjSgn :: Num a => Bool -> a -> a | |
adjSgn s v = if s then -v else v | |
-- We need to be able to work with frame sets, i.e vectors, bi-vectors, --- | |
-- and need a sensible nomenclature | |
-- given a permutation of [1..n] (as a list), | |
-- returns the number of transpositions which led to it | |
numTrans [] = 0 | |
numTrans xs = numTrans' 0 [] xs where | |
numTrans' i ls [r] = i + numTrans (reverse ls) | |
numTrans' i ls (r1:r2:rs) = | |
if r1 <= r2 | |
then numTrans' i (r1:ls) (r2:rs) -- no swap needed | |
else numTrans' (i+1) (r2:ls) (r1:rs) -- swap needed | |
-- eliminate duplicate basis elements pairwise in a sorted list | |
-- coevaluate signature | |
nubPairB :: [Int] -> ([Int],Bool) | |
nubPairB [] = ([],False) | |
nubPairB [a] = ([a],False) | |
nubPairB (a:b:bs) | |
| a==b && a>0 = nubPairB bs | |
| a==b && b<0 = let (r,s) = nubPairB bs | |
in (r,not s) | |
| otherwise = let (r,s) = nubPairB (b:bs) | |
in (a:r,s) | |
obviousChoices :: Int -> [[Int]] | |
obviousChoices 0 = [] | |
obviousChoices 1 = [[1]] | |
obviousChoices 2 = [[1,2],[1,3]] | |
obviousChoices 3 = [[1,2,7],[1,3,6]] | |
obviousChoices 4 = [[1,2,7,11],[1,2,7,15],[1,3,6,10],[1,3,6,14]] | |
obviousChoices 5 = [[1,2,7,11,31],[1,2,7,15,27],[1,3,6,10,30],[1,3,6,14,26]] | |
-- should be possible to find a sequence generator for this | |
obviousChoices dim = [map (\i -> getIndex $ GA (e_ i 1)) [1..dim]] | |
where getIndex = fst . head . (filter ((/=) 0 . snd)) . invGFT .cl | |
signature :: Int -> Bool | |
signature i = let v = GA (b_ i 1) | |
in (>0) . snd . head . invGFT . cl $ v*v | |
-- find a vector basis in GA that has the proper signature | |
fixBasis :: (Int,Int) -> Maybe [Int] | |
fixBasis (p,q) | |
| p < 0 || q < 0 = Nothing | |
| otherwise = let choices = obviousChoices (p+q) | |
in msum [if pTest set then return set else Nothing | set <- choices] | |
where pTest [] = False | |
pTest [x] = (p == 1) && signature x | |
pTest l@(x:xs) = (==p) . length $ filter id $ fmap signature l | |
-- use a convenient notation for the vector basis | |
type Key = Int | |
nameBasis :: (Int,Int) -> Maybe [(Key,Int)] | |
nameBasis (p,q) = do basis <- fixBasis (p,q) | |
let orderedB = map snd $ sort $ zip (fmap signature basis) basis | |
return $ zip names orderedB | |
where names = take (p+q) $ [-q..(-1)] ++ [1..] | |
-- some other utility | |
-- a functional extension to filterM | |
ffilterM :: (Monad m) => (a -> m Bool) -> (a -> a -> a) -> [a] -> m [a] | |
ffilterM _ _ [] = return [] | |
ffilterM p f (x:xs) = do | |
flg <- p x | |
ys <- ffilterM p f xs | |
return (if flg then (if null ys then [x] else (x `f` (head ys)):ys) else ys) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment