Created
August 8, 2012 12:41
-
-
Save flakas/3294829 to your computer and use it in GitHub Desktop.
Modified Arduino Ping))) example to work with 4-Pin HC-SR04 Ultrasonic Sensor Distance Measuring Module
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* HC-SR04 Sensor | |
https://www.dealextreme.com/p/hc-sr04-ultrasonic-sensor-distance-measuring-module-133696 | |
This sketch reads a HC-SR04 ultrasonic rangefinder and returns the | |
distance to the closest object in range. To do this, it sends a pulse | |
to the sensor to initiate a reading, then listens for a pulse | |
to return. The length of the returning pulse is proportional to | |
the distance of the object from the sensor. | |
The circuit: | |
* VCC connection of the sensor attached to +5V | |
* GND connection of the sensor attached to ground | |
* TRIG connection of the sensor attached to digital pin 2 | |
* ECHO connection of the sensor attached to digital pin 4 | |
Original code for Ping))) example was created by David A. Mellis | |
Adapted for HC-SR04 by Tautvidas Sipavicius | |
This example code is in the public domain. | |
*/ | |
const int trigPin = 2; | |
const int echoPin = 4; | |
void setup() { | |
// initialize serial communication: | |
Serial.begin(9600); | |
} | |
void loop() | |
{ | |
// establish variables for duration of the ping, | |
// and the distance result in inches and centimeters: | |
long duration, inches, cm; | |
// The sensor is triggered by a HIGH pulse of 10 or more microseconds. | |
// Give a short LOW pulse beforehand to ensure a clean HIGH pulse: | |
pinMode(trigPin, OUTPUT); | |
digitalWrite(trigPin, LOW); | |
delayMicroseconds(2); | |
digitalWrite(trigPin, HIGH); | |
delayMicroseconds(10); | |
digitalWrite(trigPin, LOW); | |
// Read the signal from the sensor: a HIGH pulse whose | |
// duration is the time (in microseconds) from the sending | |
// of the ping to the reception of its echo off of an object. | |
pinMode(echoPin, INPUT); | |
duration = pulseIn(echoPin, HIGH); | |
// convert the time into a distance | |
inches = microsecondsToInches(duration); | |
cm = microsecondsToCentimeters(duration); | |
Serial.print(inches); | |
Serial.print("in, "); | |
Serial.print(cm); | |
Serial.print("cm"); | |
Serial.println(); | |
delay(100); | |
} | |
long microsecondsToInches(long microseconds) | |
{ | |
// According to Parallax's datasheet for the PING))), there are | |
// 73.746 microseconds per inch (i.e. sound travels at 1130 feet per | |
// second). This gives the distance travelled by the ping, outbound | |
// and return, so we divide by 2 to get the distance of the obstacle. | |
// See: http://www.parallax.com/dl/docs/prod/acc/28015-PING-v1.3.pdf | |
return microseconds / 74 / 2; | |
} | |
long microsecondsToCentimeters(long microseconds) | |
{ | |
// The speed of sound is 340 m/s or 29 microseconds per centimeter. | |
// The ping travels out and back, so to find the distance of the | |
// object we take half of the distance travelled. | |
return microseconds / 29 / 2; | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
How can both codes be joined?
#include <ZumoBuzzer.h>
#include <ZumoMotors.h>
#include <Pushbutton.h>
#include <QTRSensors.h>
#include <ZumoReflectanceSensorArray.h>
#include <avr/pgmspace.h>
#include <Wire.h>
#include <LSM303.h>
/* This example uses the accelerometer in the Zumo Shield's onboard LSM303DLHC with the LSM303 Library to
*/
// #define LOG_SERIAL // write log output to serial port
#define LED 13
Pushbutton button(ZUMO_BUTTON); // pushbutton on pin 12
// Accelerometer Settings
#define RA_SIZE 3 // number of readings to include in running average of accelerometer readings
#define XY_ACCELERATION_THRESHOLD 2400 // for detection of contact (~16000 = magnitude of acceleration due to gravity)
// Reflectance Sensor Settings
#define NUM_SENSORS 6
unsigned int sensor_values[NUM_SENSORS];
// this might need to be tuned for different lighting conditions, surfaces, etc.
#define QTR_THRESHOLD 1400 // microseconds
ZumoReflectanceSensorArray sensors(QTR_NO_EMITTER_PIN);
// Motor Settings
ZumoMotors motors;
// these might need to be tuned for different motor types
#define REVERSE_SPEED 400 // 0 is stopped, 400 is full speed
#define TURN_SPEED 400
#define SEARCH_SPEED 400
#define SUSTAINED_SPEED 400 // switches to SUSTAINED_SPEED from FULL_SPEED after FULL_SPEED_DURATION_LIMIT ms
#define FULL_SPEED 400
#define STOP_DURATION 100 // ms
#define REVERSE_DURATION 200 // ms
#define TURN_DURATION 400 // ms
#define RIGHT 1
#define LEFT -1
enum ForwardSpeed { SearchSpeed, SustainedSpeed, FullSpeed };
ForwardSpeed _forwardSpeed; // current forward speed setting
unsigned long full_speed_start_time;
#define FULL_SPEED_DURATION_LIMIT 250 // ms
// Sound Effects
ZumoBuzzer buzzer;
const char sound_effect[] PROGMEM = "O4 T100 V15 L4 MS g12>c12>e12>G6>E12 ML>G2"; // "charge" melody
// use V0 to suppress sound effect; v15 for max volume
// Timing
unsigned long loop_start_time;
unsigned long last_turn_time;
unsigned long contact_made_time;
#define MIN_DELAY_AFTER_TURN 400 // ms = min delay before detecting contact event
#define MIN_DELAY_BETWEEN_CONTACTS 1000 // ms = min delay between detecting new contact event
// RunningAverage class
// based on RunningAverage library for Arduino
// source: http://playground.arduino.cc/Main/RunningAverage
template
class RunningAverage
{
public:
RunningAverage(void);
RunningAverage(int);
~RunningAverage();
void clear();
void addValue(T);
T getAverage() const;
void fillValue(T, int);
protected:
int _size;
int _cnt;
int _idx;
T _sum;
T * _ar;
static T zero;
};
// Accelerometer Class -- extends the LSM303 Library to support reading and averaging the x-y acceleration
// vectors from the onboard LSM303DLHC accelerometer/magnetometer
class Accelerometer : public LSM303
{
typedef struct acc_data_xy
{
unsigned long timestamp;
int x;
int y;
float dir;
} acc_data_xy;
public:
Accelerometer() : ra_x(RA_SIZE), ra_y(RA_SIZE) {};
~Accelerometer() {};
void enable(void);
void getLogHeader(void);
void readAcceleration(unsigned long timestamp);
float len_xy() const;
float dir_xy() const;
int x_avg(void) const;
int y_avg(void) const;
long ss_xy_avg(void) const;
float dir_xy_avg(void) const;
private:
acc_data_xy last;
RunningAverage ra_x;
RunningAverage ra_y;
};
Accelerometer lsm303;
boolean in_contact; // set when accelerometer detects contact with opposing robot
// forward declaration
void setForwardSpeed(ForwardSpeed speed);
void setup()
{
// Initiate the Wire library and join the I2C bus as a master
Wire.begin();
// Initiate LSM303
lsm303.init();
lsm303.enable();
#ifdef LOG_SERIAL
Serial.begin(9600);
lsm303.getLogHeader();
#endif
randomSeed((unsigned int) millis());
// uncomment if necessary to correct motor directions
motors.flipLeftMotor(true);
motors.flipRightMotor(true);
pinMode(LED, HIGH);
buzzer.playMode(PLAY_AUTOMATIC);
waitForButtonAndCountDown(false);
}
void waitForButtonAndCountDown(bool restarting)
{
#ifdef LOG_SERIAL
Serial.print(restarting ? "Restarting Countdown" : "Starting Countdown");
Serial.println();
#endif
digitalWrite(LED, HIGH);
button.waitForButton();
digitalWrite(LED, LOW);
// play audible countdown
for (int i = 0; i < 3; i++)
{
delay(1000);
buzzer.playNote(NOTE_G(3), 50, 12);
}
delay(1000);
buzzer.playFromProgramSpace(sound_effect);
delay(1000);
// reset loop variables
in_contact = false; // 1 if contact made; 0 if no contact or contact lost
contact_made_time = 0;
last_turn_time = millis(); // prevents false contact detection on initial acceleration
_forwardSpeed = SearchSpeed;
full_speed_start_time = 0;
}
void loop()
{
if (button.isPressed())
{
// if button is pressed, stop and wait for another press to go again
motors.setSpeeds(0, 0);
button.waitForRelease();
waitForButtonAndCountDown(true);
}
loop_start_time = millis();
lsm303.readAcceleration(loop_start_time);
sensors.read(sensor_values);
if ((_forwardSpeed == FullSpeed) && (loop_start_time - full_speed_start_time > FULL_SPEED_DURATION_LIMIT) && (cm > 0) )
{
setForwardSpeed(SustainedSpeed);
}
if (sensor_values[0] < QTR_THRESHOLD)
{
// if leftmost sensor detects line, reverse and turn to the right
turn(RIGHT, true);
}
else if (sensor_values[5] < QTR_THRESHOLD)
{
// if rightmost sensor detects line, reverse and turn to the left
turn(LEFT, true);
}
else // otherwise, go straight
{
if (check_for_contact()) on_contact_made();
int speed = getForwardSpeed();
motors.setSpeeds(speed, speed);
}
}
// execute turn
// direction: RIGHT or LEFT
// randomize: to improve searching
void turn(char direction, bool randomize)
{
#ifdef LOG_SERIAL
Serial.print("turning ...");
Serial.println();
#endif
// assume contact lost
on_contact_lost();
static unsigned int duration_increment = TURN_DURATION / 4;
motors.setSpeeds(0,0);
delay(STOP_DURATION);
motors.setSpeeds(-REVERSE_SPEED, -REVERSE_SPEED);
delay(REVERSE_DURATION);
motors.setSpeeds(TURN_SPEED * direction, -TURN_SPEED * direction);
delay(randomize ? TURN_DURATION + (random(8) - 2) * duration_increment : TURN_DURATION);
int speed = getForwardSpeed();
motors.setSpeeds(speed, speed);
last_turn_time = millis();
}
void setForwardSpeed(ForwardSpeed speed)
{
_forwardSpeed = speed;
if (speed == FullSpeed) full_speed_start_time = loop_start_time;
}
int getForwardSpeed()
{
int speed;
switch (_forwardSpeed)
{
case FullSpeed:
speed = FULL_SPEED;
break;
case SustainedSpeed:
speed = SUSTAINED_SPEED;
break;
default:
speed = SEARCH_SPEED;
break;
}
return speed;
}
// check for contact, but ignore readings immediately after turning or losing contact
bool check_for_contact()
{
static long threshold_squared = (long) XY_ACCELERATION_THRESHOLD * (long) XY_ACCELERATION_THRESHOLD;
return (lsm303.ss_xy_avg() > threshold_squared) &&
(loop_start_time - last_turn_time > MIN_DELAY_AFTER_TURN) &&
(loop_start_time - contact_made_time > MIN_DELAY_BETWEEN_CONTACTS);
}
// sound horn and accelerate on contact -- fight or flight
void on_contact_made()
{
#ifdef LOG_SERIAL
Serial.print("contact made");
Serial.println();
#endif
in_contact = true;
contact_made_time = loop_start_time;
setForwardSpeed(FullSpeed);
buzzer.playFromProgramSpace(sound_effect);
}
// reset forward speed
void on_contact_lost()
{
#ifdef LOG_SERIAL
Serial.print("contact lost");
Serial.println();
#endif
in_contact = false;
setForwardSpeed(SearchSpeed);
}
// class Accelerometer -- member function definitions
// enable accelerometer only
// to enable both accelerometer and magnetometer, call enableDefault() instead
void Accelerometer::enable(void)
{
// Enable Accelerometer
// 0x27 = 0b00100111
// Normal power mode, all axes enabled
writeAccReg(LSM303::CTRL_REG1_A, 0x27);
if (getDeviceType() == LSM303::device_DLHC)
writeAccReg(LSM303::CTRL_REG4_A, 0x08); // DLHC: enable high resolution mode
}
void Accelerometer::getLogHeader(void)
{
Serial.print("millis x y len dir | len_avg dir_avg | avg_len");
Serial.println();
}
void Accelerometer::readAcceleration(unsigned long timestamp)
{
readAcc();
if (a.x == last.x && a.y == last.y) return;
last.timestamp = timestamp;
last.x = a.x;
last.y = a.y;
ra_x.addValue(last.x);
ra_y.addValue(last.y);
#ifdef LOG_SERIAL
Serial.print(last.timestamp);
Serial.print(" ");
Serial.print(last.x);
Serial.print(" ");
Serial.print(last.y);
Serial.print(" ");
Serial.print(len_xy());
Serial.print(" ");
Serial.print(dir_xy());
Serial.print(" | ");
Serial.print(sqrt(static_cast(ss_xy_avg())));
Serial.print(" ");
Serial.print(dir_xy_avg());
Serial.println();
#endif
}
float Accelerometer::len_xy() const
{
return sqrt(last.xa.x + last.ya.y);
}
float Accelerometer::dir_xy() const
{
return atan2(last.x, last.y) * 180.0 / M_PI;
}
int Accelerometer::x_avg(void) const
{
return ra_x.getAverage();
}
int Accelerometer::y_avg(void) const
{
return ra_y.getAverage();
}
long Accelerometer::ss_xy_avg(void) const
{
long x_avg_long = static_cast(x_avg());
long y_avg_long = static_cast(y_avg());
return x_avg_longx_avg_long + y_avg_longy_avg_long;
}
float Accelerometer::dir_xy_avg(void) const
{
return atan2(static_cast(x_avg()), static_cast(y_avg())) * 180.0 / M_PI;
}
// RunningAverage class
// based on RunningAverage library for Arduino
// source: http://playground.arduino.cc/Main/RunningAverage
// author: [email protected]
// Released to the public domain
template
T RunningAverage::zero = static_cast(0);
template
RunningAverage::RunningAverage(int n)
{
_size = n;
_ar = (T*) malloc(_size * sizeof(T));
clear();
}
template
RunningAverage::~RunningAverage()
{
free(_ar);
}
// resets all counters
template
void RunningAverage::clear()
{
_cnt = 0;
_idx = 0;
_sum = zero;
for (int i = 0; i< _size; i++) _ar[i] = zero; // needed to keep addValue simple
}
// adds a new value to the data-set
template
void RunningAverage::addValue(T f)
{
_sum -= _ar[_idx];
_ar[_idx] = f;
_sum += _ar[_idx];
_idx++;
if (_idx == _size) _idx = 0; // faster than %
if (_cnt < _size) _cnt++;
}
// returns the average of the data-set added so far
template
T RunningAverage::getAverage() const
{
if (_cnt == 0) return zero; // NaN ? math.h
return _sum / _cnt;
}
// fill the average with a value
// the param number determines how often value is added (weight)
// number should preferably be between 1 and size
template
void RunningAverage::fillValue(T value, int number)
{
clear();
for (int i = 0; i < number; i++)
{
addValue(value);
}
}