Created
February 22, 2011 04:00
-
-
Save flatline/838202 to your computer and use it in GitHub Desktop.
An eight-puzzle solver in python
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Solves a randomized 8-puzzle using A* algorithm with plug-in heuristics | |
import random | |
import math | |
_goal_state = [[1,2,3], | |
[4,5,6], | |
[7,8,0]] | |
def index(item, seq): | |
"""Helper function that returns -1 for non-found index value of a seq""" | |
if item in seq: | |
return seq.index(item) | |
else: | |
return -1 | |
class EightPuzzle: | |
def __init__(self): | |
# heuristic value | |
self._hval = 0 | |
# search depth of current instance | |
self._depth = 0 | |
# parent node in search path | |
self._parent = None | |
self.adj_matrix = [] | |
for i in range(3): | |
self.adj_matrix.append(_goal_state[i][:]) | |
def __eq__(self, other): | |
if self.__class__ != other.__class__: | |
return False | |
else: | |
return self.adj_matrix == other.adj_matrix | |
def __str__(self): | |
res = '' | |
for row in range(3): | |
res += ' '.join(map(str, self.adj_matrix[row])) | |
res += '\r\n' | |
return res | |
def _clone(self): | |
p = EightPuzzle() | |
for i in range(3): | |
p.adj_matrix[i] = self.adj_matrix[i][:] | |
return p | |
def _get_legal_moves(self): | |
"""Returns list of tuples with which the free space may | |
be swapped""" | |
# get row and column of the empty piece | |
row, col = self.find(0) | |
free = [] | |
# find which pieces can move there | |
if row > 0: | |
free.append((row - 1, col)) | |
if col > 0: | |
free.append((row, col - 1)) | |
if row < 2: | |
free.append((row + 1, col)) | |
if col < 2: | |
free.append((row, col + 1)) | |
return free | |
def _generate_moves(self): | |
free = self._get_legal_moves() | |
zero = self.find(0) | |
def swap_and_clone(a, b): | |
p = self._clone() | |
p.swap(a,b) | |
p._depth = self._depth + 1 | |
p._parent = self | |
return p | |
return map(lambda pair: swap_and_clone(zero, pair), free) | |
def _generate_solution_path(self, path): | |
if self._parent == None: | |
return path | |
else: | |
path.append(self) | |
return self._parent._generate_solution_path(path) | |
def solve(self, h): | |
"""Performs A* search for goal state. | |
h(puzzle) - heuristic function, returns an integer | |
""" | |
def is_solved(puzzle): | |
return puzzle.adj_matrix == _goal_state | |
openl = [self] | |
closedl = [] | |
move_count = 0 | |
while len(openl) > 0: | |
x = openl.pop(0) | |
move_count += 1 | |
if (is_solved(x)): | |
if len(closedl) > 0: | |
return x._generate_solution_path([]), move_count | |
else: | |
return [x] | |
succ = x._generate_moves() | |
idx_open = idx_closed = -1 | |
for move in succ: | |
# have we already seen this node? | |
idx_open = index(move, openl) | |
idx_closed = index(move, closedl) | |
hval = h(move) | |
fval = hval + move._depth | |
if idx_closed == -1 and idx_open == -1: | |
move._hval = hval | |
openl.append(move) | |
elif idx_open > -1: | |
copy = openl[idx_open] | |
if fval < copy._hval + copy._depth: | |
# copy move's values over existing | |
copy._hval = hval | |
copy._parent = move._parent | |
copy._depth = move._depth | |
elif idx_closed > -1: | |
copy = closedl[idx_closed] | |
if fval < copy._hval + copy._depth: | |
move._hval = hval | |
closedl.remove(copy) | |
openl.append(move) | |
closedl.append(x) | |
openl = sorted(openl, key=lambda p: p._hval + p._depth) | |
# if finished state not found, return failure | |
return [], 0 | |
def shuffle(self, step_count): | |
for i in range(step_count): | |
row, col = self.find(0) | |
free = self._get_legal_moves() | |
target = random.choice(free) | |
self.swap((row, col), target) | |
row, col = target | |
def find(self, value): | |
"""returns the row, col coordinates of the specified value | |
in the graph""" | |
if value < 0 or value > 8: | |
raise Exception("value out of range") | |
for row in range(3): | |
for col in range(3): | |
if self.adj_matrix[row][col] == value: | |
return row, col | |
def peek(self, row, col): | |
"""returns the value at the specified row and column""" | |
return self.adj_matrix[row][col] | |
def poke(self, row, col, value): | |
"""sets the value at the specified row and column""" | |
self.adj_matrix[row][col] = value | |
def swap(self, pos_a, pos_b): | |
"""swaps values at the specified coordinates""" | |
temp = self.peek(*pos_a) | |
self.poke(pos_a[0], pos_a[1], self.peek(*pos_b)) | |
self.poke(pos_b[0], pos_b[1], temp) | |
def heur(puzzle, item_total_calc, total_calc): | |
""" | |
Heuristic template that provides the current and target position for each number and the | |
total function. | |
Parameters: | |
puzzle - the puzzle | |
item_total_calc - takes 4 parameters: current row, target row, current col, target col. | |
Returns int. | |
total_calc - takes 1 parameter, the sum of item_total_calc over all entries, and returns int. | |
This is the value of the heuristic function | |
""" | |
t = 0 | |
for row in range(3): | |
for col in range(3): | |
val = puzzle.peek(row, col) - 1 | |
target_col = val % 3 | |
target_row = val / 3 | |
# account for 0 as blank | |
if target_row < 0: | |
target_row = 2 | |
t += item_total_calc(row, target_row, col, target_col) | |
return total_calc(t) | |
#some heuristic functions, the best being the standard manhattan distance in this case, as it comes | |
#closest to maximizing the estimated distance while still being admissible. | |
def h_manhattan(puzzle): | |
return heur(puzzle, | |
lambda r, tr, c, tc: abs(tr - r) + abs(tc - c), | |
lambda t : t) | |
def h_manhattan_lsq(puzzle): | |
return heur(puzzle, | |
lambda r, tr, c, tc: (abs(tr - r) + abs(tc - c))**2, | |
lambda t: math.sqrt(t)) | |
def h_linear(puzzle): | |
return heur(puzzle, | |
lambda r, tr, c, tc: math.sqrt(math.sqrt((tr - r)**2 + (tc - c)**2)), | |
lambda t: t) | |
def h_linear_lsq(puzzle): | |
return heur(puzzle, | |
lambda r, tr, c, tc: (tr - r)**2 + (tc - c)**2, | |
lambda t: math.sqrt(t)) | |
def h_default(puzzle): | |
return 0 | |
def main(): | |
p = EightPuzzle() | |
p.shuffle(20) | |
print p | |
path, count = p.solve(h_manhattan) | |
path.reverse() | |
for i in path: | |
print i | |
print "Solved with Manhattan distance exploring", count, "states" | |
path, count = p.solve(h_manhattan_lsq) | |
print "Solved with Manhattan least squares exploring", count, "states" | |
path, count = p.solve(h_linear) | |
print "Solved with linear distance exploring", count, "states" | |
path, count = p.solve(h_linear_lsq) | |
print "Solved with linear least squares exploring", count, "states" | |
# path, count = p.solve(heur_default) | |
# print "Solved with BFS-equivalent in", count, "moves" | |
if __name__ == "__main__": | |
main() |
how can i print fval of optimal solution path
The call at line 231 path, count = p.solve(h_manhattan)
issues the following error ... on an irregular basis!!
"ValueError: need more than 1 value to unpack" (PY 2)
"ValueError: not enough values to unpack (expected 2, got 1)" (PY 3)
Amazing that no one mentions it! This obnoxious error happens because the 'solve()' function returns a null path when the finished stated is not reached, whereas it should exit with a message or use some means for the caller to detect the failure, e.g. 'count' = -1 … There are dozens of ways to do it!
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
will somebody tell me that are there different heuristics used with manhattan or totally different then manhattan