Created
June 10, 2013 22:42
-
-
Save flaviovdf/5753079 to your computer and use it in GitHub Desktop.
Learning mod 2 (xor) using binary representation
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from sklearn import grid_search | |
from sklearn import metrics | |
from sklearn import tree | |
import numpy as np | |
def create_sample_decimal(num_rows, max_val): | |
X = np.random.randint(0, max_val, size=(num_rows, 2)) | |
y = (X[:, 0] + X[:, 1]) % 2 | |
return X, y | |
def create_sample_binary(num_rows, max_val): | |
first_col = np.random.randint(0, max_val, size=num_rows) | |
second_col = np.random.randint(0, max_val, size=num_rows) | |
first_col = np.asanyarray(first_col, dtype=np.uint8) | |
second_col = np.asanyarray(second_col, dtype=np.uint8) | |
bin_first = np.unpackbits(first_col) | |
bin_second = np.unpackbits(second_col) | |
bin_first = np.reshape(bin_first, (num_rows, 8)) | |
bin_second = np.reshape(bin_second, (num_rows, 8)) | |
#simple sanity check for the reshape above | |
assert (bin_first[0] == np.unpackbits(first_col[0])).all() | |
X = np.hstack((bin_first, bin_second)) | |
y = (first_col + second_col) % 2 | |
return X, y | |
def main(): | |
n_train = 1000 | |
n_test = 100 | |
max_val = 255 | |
use_bin = True | |
if use_bin: | |
X_train, y_train = create_sample_binary(n_train, max_val) | |
X_test, y_test = create_sample_binary(n_test, max_val) | |
else: | |
X_train, y_train = create_sample_decimal(n_train, max_val) | |
X_test, y_test = create_sample_decimal(n_test, max_val) | |
clf = tree.DecisionTreeClassifier('entropy') | |
estimator = clf.fit(X_train, y_train) | |
y_predict = estimator.predict(X_test) | |
print metrics.classification_report(y_test, y_predict) | |
if __name__ == '__main__': | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment