Created
June 2, 2016 08:02
-
-
Save floodsung/991f2deb075bf4f4add0dacc14a6a94f to your computer and use it in GitHub Desktop.
This solution is mainly from John Schulman's Deep Reinforcement Learning Lab script in Machine Learning Summer School 2016
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import gym | |
from gym.spaces import Discrete,Box | |
# ------------------------------------------- | |
# Policies | |
# ------------------------------------------- | |
class DeterministicDiscreteActionLinearPolicy(object): | |
def __init__(self,theta,ob_space,ac_space): | |
""" | |
dim_ob:dimension of observations | |
n_actions: number of actions | |
theta: flat vector of parameters | |
""" | |
dim_ob = ob_space.shape[0] | |
n_actions = ac_space.n | |
assert len(theta) == (dim_ob + 1) * n_actions | |
self.W = theta[0:dim_ob * n_actions].reshape(dim_ob,n_actions) | |
self.b = theta[dim_ob * n_actions : None].reshape(1,n_actions) | |
def act(self,ob): | |
""" | |
""" | |
y = ob.dot(self.W) + self.b | |
a = y.argmax() | |
return a | |
class DeterministicContinuousActionLinearPolicy(object): | |
def __init__(self, theta,ob_space,ac_space): | |
""" | |
dim_ob: dimension of observations | |
dim_ac: dimension of action vector | |
theta: flat vector of parameters | |
""" | |
self.ac_space = ac_space | |
dim_ob = ob_space.shape[0] | |
dim_ac = ac_space.shape[0] | |
assert len(theta) == (dim_ob + 1) * dim_ac | |
self.W = theta[0:dim_ob*dim_ac].reshape(dim_ob,dim_ac) | |
self.b = theta[dim_ob * dim_ac : None] | |
def act(self,ob): | |
a = np.clip(ob.dot(self.W) + self.b,self.ac_space.low,self.ac_space.high) | |
return a | |
def do_episode(policy,env,num_steps,render=False): | |
total_rew = 0 | |
ob = env.reset() | |
for t in range(num_steps): | |
a = policy.act(ob) | |
(ob,reward,done,_info) = env.step(a) | |
total_rew += reward | |
if render and t%3 == 0: env.render() | |
if done: break | |
return total_rew | |
env = None | |
def noisy_evaluation(theta): | |
policy = make_policy(theta) | |
rew = do_episode(policy,env,num_steps) | |
return rew | |
def make_policy(theta): | |
if isinstance(env.action_space,Discrete): | |
return DeterministicDiscreteActionLinearPolicy(theta,env.observation_space,env.action_space) | |
elif isinstance(env.action_space,Box): | |
return DeterministicContinuousActionLinearPolicy(theta,env.observation_space,env.action_space) | |
else: | |
raise NotImplementedError | |
# Task settings: | |
name = 'CartPole-v0' | |
env = gym.make(name) | |
outdir = '/tmp/' + name + '-results' | |
env.monitor.start(outdir,force=True) | |
num_steps = 500 # maximum length of episode | |
# Alg settings: | |
n_iter = 100 # number of iterations of CEM | |
batch_size = 25 # number of samples per batch | |
elite_frac = 0.2 # fraction of samples used as elite set | |
if isinstance(env.action_space,Discrete): | |
dim_theta = (env.observation_space.shape[0] + 1) * env.action_space.n | |
elif isinstance(env.action_space,Box): | |
dim_theta = (env.observation_space.shape[0] + 1) * env.action_space.shape[0] | |
else: | |
raise NotImplementedError | |
# Initialize mean and standard deviation | |
theta_mean = np.zeros(dim_theta) | |
theta_std = np.ones(dim_theta) | |
extra_std = 0.001 * np.ones(dim_theta) | |
std_decay_time = -1 | |
# Now, for the algorithm | |
for iteration in xrange(n_iter): | |
# Sample parameter vectors | |
extra_var_multiplier = max((1.0-iteration/float(n_iter/2)),0) | |
sample_std = np.sqrt(theta_std + np.square(extra_std) * extra_var_multiplier) | |
thetas = [theta_mean + dth for dth in sample_std * np.random.randn(batch_size,dim_theta)] | |
rewards = [noisy_evaluation(theta) for theta in thetas] | |
# Get elite parameters | |
n_elite = int(batch_size * elite_frac) | |
elite_inds = np.argsort(rewards)[batch_size - n_elite:batch_size] | |
elite_thetas = [thetas[i] for i in elite_inds] | |
# Update theta_mean,theta_std | |
theta_mean = np.mean(elite_thetas,axis = 0) | |
theta_std = np.std(elite_thetas,axis = 0) | |
print "iteration %i. mean f: %8.3g. max f: %8.3g" % (iteration,np.mean(rewards),np.max(rewards)) | |
do_episode(make_policy(theta_mean),env,num_steps,render=True) | |
env.monitor.close() | |
print "theta_mean:",theta_mean |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment