Created
June 18, 2017 16:02
-
-
Save flovv/3d992cc06d2ab20c4b02e9ea8f8e8892 to your computer and use it in GitHub Desktop.
Deep Learning for Brand Logo detection in R
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
########## data proprocessing! | |
## download the file set from here: http://image.ntua.gr/iva/datasets/flickr_logos/ | |
## extract image to a folder flickrData | |
### copy files in the right directories | |
options(stringsAsFactors = F) | |
df <- read.csv("flickrData/flickr_logos_27_dataset_query_set_annotation.txt", sep="\t") | |
for( i in unique(df$label)){ | |
dir.create(paste0("flickrData/train/", i)) | |
dir.create(paste0("flickrData/test/", i)) | |
} | |
train <- sample(df$file, 200) | |
test <- df[!df$file %in% train,]$file | |
### copy files | |
for(i in train){ | |
label <- df[df$file == i,]$label | |
file.copy(paste0("flickrData/flickr_logos_27_dataset_images/", i), paste0("flickrData/train/", label, "/", i)) | |
} | |
for(i in test){ | |
label <- df[df$file == i,]$label | |
file.copy(paste0("flickrData/flickr_logos_27_dataset_images/", i), paste0("flickrData/test/", label, "/", i)) | |
} | |
#### the KERAS part | |
# devtools::install_github("rstudio/keras") | |
require(keras) | |
# install_tensorflow() | |
### setting up the model | |
img_width <- 64 | |
img_height <- 64 | |
batch_size <- 64 | |
train_directory <- "flickrData/train" | |
test_directory <- "flickrData/test" | |
train_generator <- flow_images_from_directory(train_directory, generator = image_data_generator(), | |
target_size = c(img_width, img_height), color_mode = "rgb", | |
class_mode = "categorical", batch_size = batch_size, shuffle = TRUE, | |
seed = 123) | |
validation_generator <- flow_images_from_directory(test_directory, generator = image_data_generator(), | |
target_size = c(img_width, img_height), color_mode = "rgb", classes = NULL, | |
class_mode = "categorical", batch_size = batch_size, shuffle = TRUE, | |
seed = 123) | |
model <- keras_model_sequential() | |
model %>% | |
layer_conv_2d(filter = 16, kernel_size = c(3,3), input_shape = c(img_width, img_height, 3)) %>% | |
layer_activation("relu") %>% | |
layer_max_pooling_2d(pool_size = c(2,2)) %>% | |
layer_conv_2d(filter = 32, kernel_size = c(3,3)) %>% | |
layer_activation("relu") %>% | |
layer_max_pooling_2d(pool_size = c(2,2)) %>% | |
layer_conv_2d(filter = 64, kernel_size = c(3,3)) %>% | |
layer_activation("relu") %>% | |
layer_max_pooling_2d(pool_size = c(2,2)) %>% | |
layer_flatten() %>% | |
layer_dense(64) %>% | |
layer_activation("relu") %>% | |
layer_dropout(0.5) %>% | |
layer_dense(27) %>% ## we have 27 classes! | |
layer_activation("softmax") | |
model %>% compile( | |
loss = "categorical_crossentropy", | |
optimizer = optimizer_rmsprop(lr = 0.0001, decay = 1e-6), | |
metrics = "accuracy" | |
) | |
train_samples <- 200 | |
validation_samples <- 70 | |
hist <- model %>% fit_generator( | |
train_generator, | |
steps_per_epoch = as.integer(train_samples/batch_size), | |
epochs = 200, | |
validation_data = validation_generator, | |
validation_steps = as.integer(validation_samples/batch_size), | |
verbose=2 | |
) | |
############################# | |
############## | |
## lets create a nice plot! | |
hist <- data.frame(acc = unlist(hist$history$acc), val_acc=unlist(hist$history$val_acc), val_loss = unlist(hist$history$val_loss),loss = unlist(hist$history$loss)) | |
colnames(hist) <- c("Training Accuracy", "Validation Accuracy" , "Validation Loss", "Training Loss") | |
hist$Epoch <- 1:200 | |
m <- melt(hist, id.vars = "Epoch") | |
ggplot(m, aes(epoch, value)) + facet_wrap(~variable, as.table = T, scales = "free" ) + geom_point() + geom_smooth() + ylab("") + theme_light() | |
######## | |
## evaluation: | |
evaluate_generator(model,validation_generator, validation_samples) | |
################## | |
# extract predictions! - out of sample - simple example | |
img_path <- "https://logorealm.com/wp-content/uploads/2017/02/adidas-trefoil-logo.png" | |
img_path <- "http://www.logolook.de/wp-content/uploads/bmw-propeller-logo.jpg" | |
download.file(img_path,'test.jpg', mode = 'wb') | |
img <- image_load('test.jpg', target_size = c(64,64)) | |
x <- image_to_array(img) | |
dim(x) <- c(1, dim(x)) | |
prediction <- model %>% predict(x) | |
colnames(prediction) <- unique(df$label)[1:27] | |
prediction[,which.max(prediction)] | |
############# |
I think the link is now:
https://keras.rstudio.com/reference/flow_images_from_directory.html
…On Wed, Jul 8, 2020 at 3:39 AM Kundan Sharma ***@***.***> wrote:
***@***.**** commented on this gist.
------------------------------
it is part of the keras library:
https://rstudio.github.io/keras/reference/flow_images_from_directory.html
I think, that has been removed. Can you please share that ?
—
You are receiving this because you authored the thread.
Reply to this email directly, view it on GitHub
<https://gist.github.com/3d992cc06d2ab20c4b02e9ea8f8e8892#gistcomment-3367624>,
or unsubscribe
<https://github.com/notifications/unsubscribe-auth/AASCD4UTMADOVYJONLDLDVLR2PE5ZANCNFSM4OUAZ3HA>
.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
it is part of the keras library:
https://rstudio.github.io/keras/reference/flow_images_from_directory.html