Skip to content

Instantly share code, notes, and snippets.

View flyq's full-sized avatar
⚙️
Make Etherem Great Again

liquan.eth flyq

⚙️
Make Etherem Great Again
View GitHub Profile
"""
https://cryptosith.org/michael/data/talks/2013-08-01-SIAMAG13.pdf
https://www.issac-conference.org/2015/Slides/Schost.pdf
http://www.craigcostello.com.au/pairings/PairingsForBeginners.pdf
"""
fresh_compute = False # Perform expensive-(ish) computations for curve orders
field_modulus = 22369874298875696930346742206501054934775599465297184582183496627646774052458024540232479018147881220178054575403841904557897715222633333372134756426301062487682326574958588001132586331462553235407484089304633076250782629492557320825577
desired_curve_order = 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177
@HarryR
HarryR / bls12_381.sage
Created September 26, 2019 20:13
Sage script to derive all necessary parameters for BLS12-381 curve (including frobenius coefficients and montgomery reduction constants etc.)
field_modulus = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787
desired_curve_order = 52435875175126190479447740508185965837690552500527637822603658699938581184513
Fp = GF(field_modulus)
PARAM_A4 = 0
PARAM_A6 = 4
E = EllipticCurve(Fp, [PARAM_A4, PARAM_A6])
E_order = E.order()