Created
March 24, 2012 16:59
-
-
Save fmder/2185104 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
from deap import algorithms, base, creator, tools | |
import sortingnetwork as sn | |
INIT_SIZE, INPUTS, MAXGEN = 40, 12, 250 | |
H_CXPB, H_MUTPB = 0.5, 0.3 | |
P_CXPB, PMUT_PB = 0.5, 0.3 | |
def evalNetwork(host, parasite, dimension): | |
network = sn.SortingNetwork(dimension, host) | |
cases = [[int(i) for i in ("{0:0%db}" % INPUTS).format(t)] for case in parasite] | |
return (network.assess(cases), len(host)) | |
def mutComparator(individual, comparator, indpb): | |
for indx in xrange(len(individual)): | |
if random.random() < indpb: | |
individual[indx] = comparator() | |
return (individual,) | |
creator.create("FitnessHost", base.Fitness, weights=(-1.0, -1.0)) | |
creator.create("FitnessParasite", base.Fitness, weights=(1.0, 0.0)) | |
creator.create("Host", list, fitness=creator.FitnessHost) | |
creator.create("Parasite", list, fitness=creator.FitnessParasite) | |
htbx = base.Toolbox() | |
htbx.register("wire", random.randint, 0, INPUTS - 1) | |
htbx.register("comparator", tools.initRepeat, tuple, htbx.wire, n=2) | |
htbx.register("individual", tools.initRepeat, creator.Host, htbx.comparator, n=INIT_SIZE) | |
htbx.register("population", tools.initRepeat, list, htbx.individual) | |
ptbx = base.Toolbox() | |
ptbx.register("integer", random.randint, 0, 2**INPUTS - 1) | |
ptbx.register("individual", tools.initRepeat, creator.Parasite, ptbx.integer, n=200) | |
ptbx.register("population", tools.initRepeat, list, ptbx.individual) | |
htbx.register("evaluate", evalNetwork, dimension=INPUTS) | |
htbx.register("mate", tools.cxMessyOnePoint) | |
htbx.register("mutate", mutComparator, comparator=htbx.comparator, indpb=0.05) | |
htbx.register("select", tools.selNSGA2) | |
ptbx.register("mate", tools.cxOnePoint) | |
ptbx.register("mutate", tools.mutUniformInt, low=0, up=2**INPUTS - 1, indpb=0.05) | |
ptbx.register("select", tools.selTournament, tournsize=3) | |
def main(): | |
random.seed(64) | |
hosts = htbx.population(n=300) | |
parasites = ptbx.population(n=300) | |
pareto = tools.ParetoFront() | |
hstats = tools.Statistics(lambda ind: ind.fitness.values) | |
hstats.register("avg", tools.mean) | |
hstats.register("std", tools.std) | |
hstats.register("min", min) | |
hstats.register("max", max) | |
logger = tools.EvolutionLogger(["gen", "evals"] + hstats.functions.keys()) | |
logger.logHeader() | |
fits = htbx.map(htbx.evaluate, hosts, parasites) | |
for host, parasite, fit in zip(hosts, parasites, fits): | |
host.fitness.values = parasite.fitness.values = fit | |
hof.update(hosts) | |
hstats.update(hosts) | |
logger.logGeneration(gen=0, evals=len(hosts), stats=hstats) | |
for g in range(1, MAXGEN): | |
hoff = algorithms.varOr(htbx, hosts, len(hosts), H_CXPB, H_MUTPB) | |
parasites = algorithms.varAnd(ptbx, parasites, P_CXPB, P_MUTPB) | |
fits = htbx.map(htbx.evaluate, hoff, parasites) | |
for host, parasite, fit in zip(hoff, parasites, fits): | |
host.fitness.values = parasite.fitness.values = fit | |
hosts = htbx.select(hoff, len(hosts)) | |
parasites = ptbx.select(parasites, len(parasites)) | |
hof.update(hosts) | |
hstats.update(hosts) | |
logger.logGeneration(gen=g, evals=len(hosts), stats=hstats) | |
for ind in hof: | |
network = sn.SortingNetwork(INPUTS, ind) | |
print "%i errors, %i comparators" % (network.assess(), network.length) | |
return hosts, hstats, hof | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment