Last active
October 7, 2015 16:58
-
-
Save fmder/7fd2e0c97ff714c19e7b to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
End of evolution after 80 generations | |
MU = 10, LAMBDA = 100 | |
Population of the generation number 79 : | |
(array('d', [0.3384816385414553, 0.2913862946297661, 0.6391631079035605, 99.78019922362375, 0.9999999999999991]), (100.78019922362375, 102.04923026469854)) | |
(array('d', [0.12725983751030595, 0.06852642494740502, 0.2944790143036873, -80.78193202686674, 0.9999999999999988]), (-79.78193202686674, -79.29166675010535)) | |
(array('d', [0.32497537960481293, 0.30232682417375684, 0.6611237261340428, 34.76077835597124, 0.999999999999999]), (35.76077835597124, 37.04920428588385)) | |
(array('d', [0.12518823446474206, 0.05982068209343572, 0.2846256754372451, -24.98563318764257, 0.9999999999999986]), (-23.98563318764257, -23.515998595647147)) | |
(array('d', [0.16447172340744912, -0.37862460917923624, 0.2425460722676009, -0.8978315694776402, 0.9999999999999983]), (0.10216843052235813, 0.13056161701817193)) | |
(array('d', [0.17269510499090013, -0.3647635822434079, 0.27057986499062364, 8.828981876870646, 0.9999999999999986]), (9.828981876870644, 9.90749326460876)) | |
(array('d', [0.12764146521017944, 0.07156554973724466, 0.2334363196615799, -68.24937696457144, 0.9999999999999988]), (-67.24937696457144, -66.81673362996244)) | |
(array('d', [0.3294069995418949, 0.32964611410507216, 0.6428384312024694, 47.698431373475145, 0.999999999999999]), (48.698431373475145, 50.000322918324585)) | |
(array('d', [0.2963294027448626, 0.3110002369345953, 0.7118619083217919, 59.825259052973365, 0.9999999999999987]), (60.825259052973365, 62.144450600974615)) | |
(array('d', [0.11186811605848641, 0.05265496942442649, 0.2384143931077872, -47.06346204979162, 0.9999999999999987]), (-46.06346204979162, -45.66052457120092)) | |
Best individual is array('d', [0.32711402660097877, 0.2834190205990133, 0.63746623032697, 116.03511086018636, 0.9999999999999991]), (117.03511086018636, 118.28311013771332) | |
Execution time : 0.561530828476 seconds --- | |
[Finished in 0.6s] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
from __future__ import division | |
import time | |
start_time = time.time() | |
import random | |
import array | |
from deap import base | |
from deap import creator | |
from deap import tools | |
# Creation of fitness and Individual classes | |
creator.create("Fitness", base.Fitness, weights=(1.0, -1.0)) | |
creator.create("Individual", array.array, typecode='d', fitness=creator.Fitness) | |
toolbox = base.Toolbox() | |
# Attribute definition | |
L_fen_MIN, L_fen_MAX = 0.1, 1.0 | |
H_fen_MIN, H_fen_MAX = 0.1, 1.0 | |
Zall_MIN, Zall_MAX = 0.1, 1.0 | |
L_cas_MIN, L_cas_MAX = 0.1, 1.0 | |
H_cas_MIN, H_cas_MAX = 1.0, 1.0 | |
toolbox.register("largeur_fenetre", random.uniform, L_fen_MIN, L_fen_MAX) | |
toolbox.register("hauteur_fenetre", random.uniform, H_fen_MIN, H_fen_MAX) | |
toolbox.register("ZallegeFen", random.uniform, Zall_MIN, Zall_MAX) | |
toolbox.register("Longueur_casquette", random.uniform, L_cas_MIN, L_cas_MAX) | |
toolbox.register("Hauteur_casquette", random.uniform, H_cas_MIN, H_cas_MAX) | |
attr_list = [] | |
attr_list.append(toolbox.largeur_fenetre) | |
attr_list.append(toolbox.hauteur_fenetre) | |
attr_list.append(toolbox.ZallegeFen) | |
attr_list.append(toolbox.Longueur_casquette) | |
attr_list.append(toolbox.Hauteur_casquette) | |
# Individuals generator | |
def generator (ind_class, attr_list) : | |
ind = ind_class(attribute() for attribute in attr_list) | |
return ind | |
toolbox.register("individual", generator, creator.Individual, attr_list) | |
toolbox.register("population", tools.initRepeat, list, toolbox.individual) | |
# definition of functions to minimize/maximize | |
def funcs_obj (individual): | |
sum1 = sum(individual) | |
sum2 = sum((individual[3], individual[4])) | |
return sum2, sum1 | |
# Operator registering | |
toolbox.register("evaluate", funcs_obj) | |
toolbox.register("mate", tools.cxSimulatedBinary, eta=10) | |
toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.1, indpb=0.05) | |
toolbox.register("select", tools.selNSGA2) | |
def main(): | |
MU, LAMBDA = 10, 100 | |
population = toolbox.population(n=MU) | |
CXPB, MUTPB, NGEN = 0.5, 0.02, 80 | |
# Evaluate the individuals with an invalid fitness | |
invalid_ind = [ind for ind in population if not ind.fitness.valid] | |
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | |
for ind, fit in zip(invalid_ind, fitnesses): | |
ind.fitness.values = fit | |
all_pop = [] | |
# Begin the generational process | |
for gen in range(1, NGEN + 1): | |
all_pop.append(map(toolbox.clone, population)) | |
# Vary the population | |
assert (CXPB + MUTPB) <= 1.0, ("The sum of the crossover and mutation " | |
"probabilities must be smaller or equal to 1.0.") | |
offspring = [] | |
for _ in xrange(LAMBDA): | |
op_choice = random.random() | |
if op_choice < CXPB : # Apply crossover | |
ind1, ind2 = map(toolbox.clone, random.sample(population, 2)) | |
ind1, ind2 = toolbox.mate(ind1, ind2) | |
del ind1.fitness.values | |
offspring.append(ind1) | |
elif op_choice < CXPB + MUTPB : # Apply mutation | |
indiv = toolbox.clone(random.choice(population)) | |
indiv, = toolbox.mutate(indiv) | |
del indiv.fitness.values | |
offspring.append(indiv) | |
else: # Apply reproduction | |
offspring.append(random.choice(population)) | |
# Evaluate the individuals with an invalid fitness | |
invalid_ind = [ind for ind in offspring if not ind.fitness.valid] | |
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind) | |
for ind, fit in zip(invalid_ind, fitnesses): | |
ind.fitness.values = fit | |
# Select the next generation population | |
population[:] = toolbox.select(offspring + population, MU) | |
print("End of evolution after %s generations" % NGEN) | |
print(" MU = %s, LAMBDA = %s" %(MU, LAMBDA)) | |
for num_pop in range(NGEN-1, NGEN) : | |
print("Population of the generation number %s :" % num_pop) | |
for indiv in all_pop[num_pop] : | |
print(indiv, indiv.fitness.values) | |
best_ind = tools.selBest(population, 1)[0] | |
print("Best individual is %s, %s" % (best_ind, best_ind.fitness.values)) | |
print("Execution time : %s seconds ---" % (time.time() - start_time)) | |
if __name__ == "__main__": | |
main() | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment