Created
August 28, 2015 13:19
-
-
Save fmder/de72992071a12ddf4c68 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import lasagne | |
import numpy | |
import theano | |
import theano.tensor as T | |
def get_data(): | |
return numpy.random.randn(200, 32, 32), numpy.random.randint(2, size=(200, 1)) | |
def build_ae(input_shape, input_var): | |
l_in = lasagne.layers.InputLayer(shape=input_shape, input_var=input_var) | |
# l_hid = lasagne.layers.Conv1DLayer(l_in, num_filters=32, filter_size=3, | |
# nonlinearity=lasagne.nonlinearities.rectify, | |
# W=lasagne.init.GlorotUniform()) | |
l_hid = lasagne.layers.Conv1DLayer(l_in, num_filters=32, filter_size=3, stride=2, | |
nonlinearity=lasagne.nonlinearities.rectify, | |
W=lasagne.init.GlorotUniform()) | |
l_out = lasagne.layers.InverseLayer(l_hid, l_hid) | |
return l_out | |
def main(): | |
X, y = get_data() | |
input_var = T.tensor3('inputs') | |
data_shape = (None, X.shape[1], X.shape[2]) | |
network = build_ae(data_shape, input_var) | |
prediction = lasagne.layers.get_output(network) | |
loss = lasagne.objectives.squared_error(prediction, input_var) | |
loss = loss.mean() | |
params = lasagne.layers.get_all_params(network, trainable=True) | |
updates = lasagne.updates.nesterov_momentum(loss, params, learning_rate=0.01, momentum=0.9) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment