|
# PASTE ALL OF THIS IN A CELL IN THE NOTEBOOK AT https://github.com/fomightez/methods_in_yeast_genetics/blob/master/cell_density_estimator/cell_density_estimator_for_multiple_samples.ipynb |
|
# and then run after running the code above. IN FACT IT IS NOW ADDED TO THE NOTEBOOK! |
|
import plotly.graph_objects as go |
|
import pandas as pd |
|
|
|
od660_values_list, cells_per_ml_values_list = unzip(yeast_cell_density_by_OD660_tuples) |
|
cells_per_ml_values_list = [(x/1.0e7) for x in cells_per_ml_values_list] # trying to get them in scale, see http://stackoverflow.com/questions/32542957/control-tick-labels-in-python-seaborn-package |
|
data_dict = {'od':od660_values_list, 'cells_per_ml':cells_per_ml_values_list} # see http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ |
|
data_df = pd.DataFrame(data_dict,columns=['od','cells_per_ml']) # see http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ |
|
|
|
data = [ |
|
go.Scatter( |
|
x=data_df['cells_per_ml'], # assign x as the dataframe column 'x' |
|
y=data_df['od'] |
|
) |
|
] |
|
|
|
layout = go.Layout( |
|
title='Optical Density vs. Cell Density', |
|
xaxis=dict( |
|
title='$\\text{cells per ml (}\\times 10^7{)}$' #latex help from https://plot.ly/python/LaTeX/ |
|
), |
|
yaxis=dict( |
|
title='$\\text{OD}_{660}$' |
|
) |
|
) |
|
|
|
# IPython notebook |
|
pfig=go.Figure(data=data,layout=layout) |
|
pfig.show() |
|
|
|
##BELOW IS OLD 2016 CODE BEFORE IT WORKS RIGHT IN JUPYTER WITHOUT CREDENTIALS ######################### |
|
''' |
|
# PASTE ALL OF THIS IN A CELL IN THE NOTEBOOK AT https://github.com/fomightez/methods_in_yeast_genetics/blob/master/cell_density_estimator/cell_density_estimator_for_multiple_samples.ipynb AND |
|
# THEN EDIT TO INCLUDE YOUR PLOTLY CREDENTIALS. |
|
import plotly |
|
import plotly.plotly as py |
|
py.sign_in('YOUR_PLOTLY_USERNAME', 'YOUR_PLOTLY_API_KEY') |
|
import plotly.graph_objs as go |
|
|
|
# based on example at https://plot.ly/pandas/line-charts/ |
|
|
|
import pandas as pd |
|
|
|
od660_values_list, cells_per_ml_values_list = unzip(yeast_cell_density_by_OD660_tuples) |
|
cells_per_ml_values_list = [(x/1.0e7) for x in cells_per_ml_values_list] # trying to get them in scale, see http://stackoverflow.com/questions/32542957/control-tick-labels-in-python-seaborn-package |
|
data_dict = {'od':od660_values_list, 'cells_per_ml':cells_per_ml_values_list} # see http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ |
|
data_df = pd.DataFrame(data_dict,columns=['od','cells_per_ml']) # see http://www.gregreda.com/2013/10/26/intro-to-pandas-data-structures/ |
|
|
|
data = [ |
|
go.Scatter( |
|
x=data_df['cells_per_ml'], # assign x as the dataframe column 'x' |
|
y=data_df['od'] |
|
) |
|
] |
|
|
|
layout = go.Layout( |
|
title='Optical Density vs. Cell Density', |
|
xaxis=dict( |
|
title='$\\text{cells per ml (}\\times 10^7{)}$' #latex help from https://plot.ly/python/LaTeX/ |
|
), |
|
yaxis=dict( |
|
title='$\\text{OD}_{660}$' |
|
) |
|
) |
|
|
|
# IPython notebook |
|
figure=go.Figure(data=data,layout=layout) # this and next line from https://plot.ly/python/user-guide/ , under 'What is Plotly?' since differs from basic example above in that need layout pointed to. |
|
py.iplot(figure, filename='od_vs_cell_density') |
|
''' |