Created
March 17, 2011 18:03
-
-
Save fonnesbeck/874808 to your computer and use it in GitHub Desktop.
Zero-inflated Poisson example using simulated data.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
""" | |
zip.py | |
Zero-inflated Poisson example using simulated data. | |
Created by Chris Fonnesbeck on 2008-06-06. | |
Distributed under the MIT license: http://www.opensource.org/licenses/mit-license.php | |
""" | |
import pymc as pm | |
import numpy as np | |
# True parameter values | |
mu_true = 5 | |
psi_true = 0.75 | |
n = 100 | |
# Simulate some data | |
data = np.array([pm.rpoisson(mu_true)*(np.random.random()<psi_true) for i in range(n)]) | |
# Uniorm prior on Poisson mean | |
mu = pm.Uniform('mu', 0, 20) | |
# Beta prior on psi | |
psi = pm.Beta('psi', alpha=1, beta=1) | |
@pm.observed(dtype=int, plot=False) | |
def zip(value=data, mu=mu, psi=psi): | |
""" ZIP likelihood """ | |
# Initialise likeihood | |
like = 0.0 | |
# Loop over data | |
for x in value: | |
if not x: | |
# Zero values | |
like += np.log((1.-psi) + psi*np.exp(-mu)) | |
else: | |
# Non-zero values | |
like += np.log(psi) + pm.poisson_like(x, mu) | |
return like | |
if __name__=="__main__": | |
M = pm.MCMC(locals()) | |
M.sample(100000, 50000, verbose=2) |
Found pymc3 equivalent:
https://github.com/pymc-devs/pymc3/blob/master/pymc3/examples/latent_occupancy.py
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Chris, do you know if there is a pymc3 version of this model?