Last active
March 2, 2018 20:09
-
-
Save forestbelton/4010e08b2661184b40d927d36047e3c8 to your computer and use it in GitHub Desktop.
Zhegalkin polynomials and conversion to algebraic normal form
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{-# LANGUAGE Rank2Types #-} | |
{-# LANGUAGE GADTs #-} | |
import qualified Data.Set as S | |
import Data.List (intercalate, sort) | |
data UnaryOp | |
= Not | |
deriving (Show) | |
data BinaryOp | |
= And | |
| Or | |
| Xor | |
deriving (Show) | |
data Term a | |
= F | |
| T | |
| Var a | |
deriving (Show, Eq, Ord) | |
newtype Monomial a = Monomial (S.Set (Term a)) | |
deriving (Show, Eq) | |
instance Ord a => Ord (Monomial a) where | |
compare (Monomial m) (Monomial n) = case compare (S.size m) (S.size n) of | |
EQ -> compareMonomials m n | |
x -> x | |
compareMonomials :: Ord a => S.Set a -> S.Set a -> Ordering | |
compareMonomials s t | S.null s = EQ | |
| otherwise = case compare (S.findMin s) (S.findMin t) of | |
EQ -> compareMonomials (S.deleteMin s) (S.deleteMin t) | |
x -> x | |
newtype Polynomial a = Polynomial (S.Set (Monomial a)) | |
deriving (Show) | |
instance Ord a => Num (Polynomial a) where | |
(Polynomial p) + (Polynomial q) = Polynomial $ S.difference (S.union p q) (S.intersection p q) | |
(Polynomial p) * (Polynomial q) = Polynomial $ S.fromList [ Monomial (S.union x y) | Monomial x <- S.toList p, Monomial y <- S.toList q ] | |
negate x = 1 + x | |
fromInteger x = case x of | |
0 -> Polynomial $ S.singleton $ Monomial $ S.singleton F | |
n -> Polynomial $ S.singleton $ Monomial $ S.singleton T | |
abs = error "not implemented" | |
signum = error "not implemented" | |
term :: Term a -> Polynomial a | |
term = Polynomial . S.singleton . Monomial . S.singleton | |
newtype V = V Char | |
deriving (Eq, Ord) | |
instance Show V where | |
show (V c) = [c] | |
data Expr a | |
= Te (Term a) | |
| UOp UnaryOp (Expr a) | |
| BOp BinaryOp (Expr a) (Expr a) | |
deriving (Show) | |
var :: Char -> Expr V | |
var = Te . Var . V | |
lnot :: Expr a -> Expr a | |
lnot = UOp Not | |
land :: Expr a -> Expr a -> Expr a | |
land = BOp And | |
lor :: Expr a -> Expr a -> Expr a | |
lor = BOp Or | |
anf :: Ord a => Expr a -> Polynomial a | |
anf (Te t) = term t | |
anf (UOp Not e) = negate $ anf e | |
anf (BOp And l r) = anf l * anf r | |
anf (BOp Or l r) = let l' = anf l; r' = anf r in l' + r' + l' * r' | |
anf (BOp Xor l r) = anf l + anf r | |
pprint :: (Show a, Ord a) => Polynomial a -> String | |
pprint (Polynomial p) = intercalate " + " $ map pprintMonomial $ sort $ S.toList p | |
pprintMonomial :: (Show a, Ord a) => Monomial a -> String | |
pprintMonomial (Monomial m) | S.size m == 1 = pprintTerm $ S.findMin m | |
| otherwise = intercalate "" $ map pprintTerm $ filter (/= T) $ S.toList m | |
pprintTerm :: Show a => Term a -> String | |
pprintTerm F = "0" | |
pprintTerm T = "1" | |
pprintTerm (Var v) = show v |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment