Attention: the list was moved to
https://github.com/dypsilon/frontend-dev-bookmarks
This page is not maintained anymore, please update your bookmarks.
// modules are defined as an array | |
// [ module function, map of requires ] | |
// | |
// map of requires is short require name -> numeric require | |
// | |
// anything defined in a previous bundle is accessed via the | |
// orig method which is the require for previous bundles | |
parcelRequire = (function (modules, cache, entry, globalName) { | |
// Save the require from previous bundle to this closure if any | |
var previousRequire = typeof parcelRequire === 'function' && parcelRequire; |
const nlf = require('nlf'); | |
const fs = require('fs'); | |
// const stream = fs.createWriteStream('my_file.txt'); | |
// to only include production dependencies | |
const filename = process.env.PUBLIC_DIR + 'licenses.json'; | |
fs.writeFile(filename, '', () => { | |
console.log('done'); | |
}); |
<!DOCTYPE html> | |
<html lang="en"> | |
<head> | |
<link rel="stylesheet" type="text/css" href="https://cdnjs.cloudflare.com/ajax/libs/bootstrap-social/5.1.1/bootstrap-social.min.css" /> | |
<link rel="stylesheet" type="text/css" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" /> | |
<meta charset="utf-8"> | |
</head> | |
<body> |
// if both values in the < comparison are strings, | |
// the comparison is made lexicographically (aka alphabetically like | |
// a dictionary). But if one or both is not a string, | |
// then both values are coerced to be numbers, and a typical numeric | |
// comparison occurs. | |
var a = 41; | |
var b = "42"; | |
var c = "43"; | |
a < b; // true |
////////////// 1 //////////// | |
//If using `parseInt` always specify the radix. | |
//Example - If we want to convert some string to number (assuming we aren't sure about what the string formaat can be.) | |
//If we want to convert it to decimal (radix - 10), we generally use | |
var mystring = '10'; | |
var myinvalidstring = '0xff'; |
from sklearn.datasets import load_iris | |
from sklearn.ensemble import RandomForestClassifier | |
import pandas as pd | |
import numpy as np | |
iris = load_iris() | |
df = pd.DataFrame(iris.data, columns=iris.feature_names) | |
df['is_train'] = np.random.uniform(0, 1, len(df)) <= .75 | |
df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names) | |
df.head() |
Attention: the list was moved to
https://github.com/dypsilon/frontend-dev-bookmarks
This page is not maintained anymore, please update your bookmarks.