Created
January 27, 2018 18:11
-
-
Save formigone/c5634c9bf11c8a7034188b0b6f0eff8f to your computer and use it in GitHub Desktop.
A simple RNN model using Tensorflow 1.4 Estimator API
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def model_fn(features, labels, mode, params): | |
word_vec = embed_sequence(features, vocab_size=params['vocab_size'], embed_dim=params['embed_size']) | |
# [-1, seq_len, embed_size] | |
word_list = tf.unstack(word_vec, axis=1) | |
# [-1, embed_size] | |
cell = tf.nn.rnn_cell.GRUCell(params['embed_size']) | |
_, encoding = tf.nn.static_rnn(cell, word_list, dtype=tf.float32) | |
logits = tf.layers.dense(encoding, params['num_classes'], activation=None) | |
if mode == tf.estimator.ModeKeys.PREDICT: | |
return tf.estimator.EstimatorSpec(mode=mode, predictions=logits) | |
cross_entropy = tf.nn.sigmoid_cross_entropy_with_logits( | |
labels=labels, | |
logits=logits | |
) | |
loss = tf.reduce_mean(cross_entropy) | |
tf.summary.scalar('loss', loss) | |
optimizer = tf.train.GradientDescentOptimizer(learning_rate=params['learning_rate']) | |
train_op = optimizer.minimize(loss=loss, global_step=tf.train.get_global_step()) | |
eval_metric_ops = { | |
'accuracy': tf.metrics.accuracy(labels=labels, predictions=tf.round(logits)), | |
} | |
tf.summary.scalar('accuracy', eval_metric_ops['accuracy'][1]) | |
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op, eval_metric_ops=eval_metric_ops) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment