Skip to content

Instantly share code, notes, and snippets.

@formix
Last active March 18, 2022 17:42
Show Gist options
  • Save formix/4076442db2304fb326a0f30bcbbebff5 to your computer and use it in GitHub Desktop.
Save formix/4076442db2304fb326a0f30bcbbebff5 to your computer and use it in GitHub Desktop.
EasyCrypt: An Obfuscation C# Class
/****************************************************************************
* Copyright 2009-2018 Jean-Philippe Gravel, P. Eng., PSEM
*
* Modified 07/31/16 - Jean-Philippe Gravel (@formixian) - Changed the class
* def to static instead of being an instance class.
* - Changed license to Apache 2.0
* 02/08/18 - Added Obfuscate and Clarify methods
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
***************************************************************************/
using System;
namespace Formix
{
/// <summary>
/// Use a random 4 bytes prefix and a feedback loop to obfuscate the same
/// input array differently each time. Expects small, self contained
/// data chunks. Not designed to be efficient with large data streams.
/// Unsafe for real life encryption, safe enough for unwanted prying eyes
/// to peek into your settings and get connection strings and passwords
/// easily.
/// </summary>
public static class EasyCrypt
{
public static byte[] Cypher(byte[] data, uint key)
{
byte[] cypher = new byte[data.Length + 4];
Random header = new Random();
cypher[0] = (byte)header.Next(256);
cypher[1] = (byte)header.Next(256);
cypher[2] = (byte)header.Next(256);
cypher[3] = (byte)header.Next(256);
byte[] keybuf = new byte[data.Length];
Random rnd = new Random(key.GetHashCode());
rnd.NextBytes(keybuf);
for (int i = 0; i < data.Length; i++)
{
cypher[i + 4] = (byte)(cypher[i] ^ data[i] ^ keybuf[i]);
}
return cypher;
}
public static byte[] Decypher(byte[] cypher, uint key)
{
Random rnd = new Random(key.GetHashCode());
byte[] data = new byte[cypher.Length - 4];
byte[] keybuf = new byte[cypher.Length - 4];
rnd.NextBytes(keybuf);
for (int i = 0; i < data.Length; i++)
{
data[i] = (byte)(cypher[i] ^ cypher[i + 4] ^ keybuf[i]);
}
return data;
}
public static string Obfuscate(string clearText, uint key)
{
var cypher = Cypher(Encoding.UTF8.GetBytes(clearText), key);
return $"#:{Convert.ToBase64String(cypher)}";
}
public static string Clarify(string obfuscatedText, uint key)
{
if (!obfuscatedText.StartsWith("#:"))
{
// The obfuscation marker is not present. We assume that the
// input is not obfuscated.
return obfuscatedText;
}
var cypher = Convert.FromBase64String(obfuscatedText.Substring(2));
var data = Decypher(cypher, key);
return Encoding.UTF8.GetString(data);
}
}
}
@formix
Copy link
Author

formix commented Sep 23, 2019

This will end up with 256 possible result only. Having 4 random bytes does not improve entropy when XORed on byte at time.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment