-
-
Save fototo/1e192ea007907a06080ea852a90bb833 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# taken from https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b | |
from sklearn import base | |
from sklearn.model_selection import KFold | |
class KFoldTargetEncoderTrain(base.BaseEstimator, | |
base.TransformerMixin): | |
def __init__(self,colnames,targetName, | |
n_fold=5, verbosity=True, | |
discardOriginal_col=False): | |
self.colnames = colnames | |
self.targetName = targetName | |
self.n_fold = n_fold | |
self.verbosity = verbosity | |
self.discardOriginal_col = discardOriginal_col | |
def fit(self, X, y=None): | |
return self | |
def transform(self,X): | |
assert(type(self.targetName) == str) | |
assert(type(self.colnames) == str) | |
assert(self.colnames in X.columns) | |
assert(self.targetName in X.columns) | |
mean_of_target = X[self.targetName].mean() | |
kf = KFold(n_splits = self.n_fold, | |
shuffle = True, random_state=2019) | |
col_mean_name = self.colnames + '_' + 'Kfold_Target_Enc' | |
X[col_mean_name] = np.nan | |
for tr_ind, val_ind in kf.split(X): | |
X_tr, X_val = X.iloc[tr_ind], X.iloc[val_ind] | |
X.loc[X.index[val_ind], col_mean_name] = X_val[self.colnames].map(X_tr.groupby(self.colnames) | |
[self.targetName].mean()) | |
X[col_mean_name].fillna(mean_of_target, inplace = True) | |
if self.verbosity: | |
encoded_feature = X[col_mean_name].values | |
print('Correlation between the new feature, {} and, {} is {}.'.format(col_mean_name,self.targetName, | |
np.corrcoef(X[self.targetName].values, | |
encoded_feature)[0][1])) | |
if self.discardOriginal_col: | |
X = X.drop(self.targetName, axis=1) | |
return X |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment