Forked from lucdangelis/bgf_cross_validation_multiple_periods.py
Created
June 10, 2020 06:26
-
-
Save fototo/c207541aee1bed011987dad555e7247a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Calibration and Holdouts periods for data split | |
date_start = ['2013-04-01','2014-04-01','2015-04-01','2016-04-01'] | |
calibration_period_end = ['2015-03-31','2016-03-31','2017-03-31','2018-03-31'] | |
date_end = ['2016-03-31','2017-03-31','2018-03-31','2019-03-31'] | |
#Arrays where to store the results of cross validation | |
accuracies_1y = [] | |
holdouts_1y = [] | |
predictions_1y = [] | |
#Execute the cross validation | |
sample_size = ... #sample size for each iteration | |
t_12 = 12 #units of time in holdout period | |
for i in range(0,len(date_start)): | |
print('Loop n: ', i) | |
#Select dataset and sample from a transaction dataframe (data) containing all transactions from 2013 onward. | |
filtered_df = data[(pd.to_datetime(data['date']) >= pd.to_datetime(date_start[i])) & (pd.to_datetime(data['date']) <= pd.to_datetime(date_end[i]))] | |
sample = pd.DataFrame(filtered_df['customer_id'].unique()).sample(sample_size) | |
sample.columns = ['customer_id'] | |
cv_df = pd.merge(filtered_df, sample, on='customer_id', how='inner') | |
#12 months holdout - 2 years calibration | |
cal_hold = calibration_and_holdout_data(cv_df, 'customer_id', 'date', | |
calibration_period_end=calibration_period_end[i], | |
observation_period_end=date_end[i], | |
freq = 'M') | |
print('Cal_hol dataset n:', i) | |
#BG/NBD model | |
bgf_loop = BetaGeoFitter(penalizer_coef=0.001) #ModifiedBetaGeoFitter assigns probability being alive <> 1 to customers who did 1 purchase: https://github.com/CamDavidsonPilon/lifetimes/issues/173 | |
bgf_loop.fit(cal_hold['frequency_cal'], cal_hold['recency_cal'], cal_hold['T_cal']) | |
print(bgf_loop) | |
print(bgf_loop.summary) | |
#Results | |
cal_hold['predicted_purchases_12t'] = bgf_loop.conditional_expected_number_of_purchases_up_to_time(t_12, cal_hold['frequency_cal'], cal_hold['recency_cal'], cal_hold['T_cal']) | |
holdout = cal_hold['frequency_holdout'].sum(axis = 0) | |
prediction = cal_hold['predicted_purchases_12t'].sum(axis = 0) | |
accuracies_1y.append((prediction-holdout)/holdout) | |
holdouts_1y.append(holdout) | |
predictions_1y.append(prediction) | |
print('Results: holdout: ', holdout, ', prediction: ', prediction, ', % Error: ', (holdout-prediction)/holdout) | |
#Plot Cross Validation Results | |
plt.rcParams['figure.figsize'] = [15, 8] | |
plt.rcParams.update({'font.size': 20}) | |
N = len(holdouts_1y) | |
t = ['2015','2016','2017','2018'] | |
ind = np.arange(N) | |
width = 0.15 | |
fig, ax = plt.subplots() | |
rects1 = ax.bar(ind -width/2, holdouts_1y, width, color = '#4472C4') | |
rects2 = ax.bar(ind + width/2, predictions_1y, width, color = '#ED7C32') | |
ax.set_ylabel('Transactions') | |
ax.set_title('4 Periods Cross Validation - 2 years Calibration & 1 year Holdout') | |
ax.set_xticks(ind + width / 2) | |
ax.set_xticklabels((t)) | |
ax.legend(('Holdout', 'Prediction'), loc = 3) | |
ax2 = ax.twinx() | |
ax2.plot(accuracies_1y, marker='d', color = '#8FAADC') | |
ax2.set_ylabel('Prediction Error') | |
ax2.legend(['Prediction Error'],loc=4) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment