Created
December 15, 2021 07:35
-
-
Save fozziethebeat/4c788b5d329c05d7c427aefc896394a5 to your computer and use it in GitHub Desktop.
Tries reading some Dataframes and only re-computes new output Dataframes if needed, otherwise copies old result dataframes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import pandas as pd | |
import prefect | |
from os import listdir | |
from os.path import isfile, join | |
from prefect import Flow, apply_map, case, task | |
from prefect.tasks.control_flow import merge | |
INPUT_BASE_PATH = './data/input' | |
OUTPUT_BASE_PATH = './data/output' | |
@task | |
def emit_filenames(): | |
''' | |
Returns a list of CSV filen names found in the input data directory. | |
''' | |
csvs = [ | |
csv_file for csv_file in listdir('./data/input') | |
if isfile(join(INPUT_BASE_PATH, csv_file)) | |
] | |
return csvs | |
@task | |
def verify_checkpoint(filename): | |
''' | |
Reads the input dataframe and corresponding output dataframe, then figures | |
out if the checkpoints match. | |
This assumes the input csv has the following fields: | |
- region | |
- metric | |
- value | |
- checkpoint | |
This assumes the output csv has the following fields: | |
- region | |
- cases | |
- deaths | |
- ratio | |
- checkpoint | |
Returns a type of two values: | |
- True if the checkpoints match, false otherwise | |
- The output dataframe when checkpoints match, otherwise the input | |
dataframe | |
''' | |
input_path = join(INPUT_BASE_PATH, filename) | |
output_path = join(OUTPUT_BASE_PATH, filename) | |
input_dataframe = pd.read_csv(input_path) | |
output_dataframe = pd.read_csv(output_path) | |
input_checkpoint = input_dataframe['checkpoint'].min() | |
output_checkpoint = output_dataframe['checkpoint'].min() | |
if (input_checkpoint == output_checkpoint): | |
return (True, output_dataframe) | |
return (False, input_dataframe) | |
@task | |
def checkpoint_matches(dataframes): | |
''' | |
Returns the truth value in the tuple | |
''' | |
return dataframes[0] | |
@task | |
def copy_result(dataframes): | |
''' | |
Returns the dataframe in the tuple | |
''' | |
return dataframes[1] | |
@task | |
def compute_result(dataframe_tuple): | |
''' | |
Does some fake computation and copies the input checkpoint to output. | |
''' | |
dataframe = dataframe_tuple[1] | |
checkpoint = dataframe['checkpoint'].min() | |
result = (dataframe.drop('checkpoint', | |
axis=1).set_index(['region', 'metric'], | |
drop=True).unstack()) | |
result.columns = result.columns.droplevel() | |
result['checkpoint'] = checkpoint | |
return result | |
@task | |
def print_dataframe(dataframe): | |
''' | |
Prints the result | |
''' | |
print(dataframe) | |
def compute_or_copy(dataframes): | |
''' | |
Copies the old output dataframe if checkpoints match or computes a new | |
output dataframe if needed. | |
''' | |
cond = checkpoint_matches(dataframes) | |
with case(cond, True): | |
copy_df = copy_result(dataframes) | |
with case(cond, False): | |
compute_df = compute_result(dataframes) | |
return merge(copy_df, compute_df) | |
with Flow('ETL') as flow: | |
csv_filenames = emit_filenames() | |
dataframes = verify_checkpoint.map(csv_filenames) | |
final_dataframes = apply_map(compute_or_copy, dataframes) | |
print_dataframe.map(final_dataframes) | |
flow.run() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment