Created
November 30, 2021 01:03
-
-
Save fozziethebeat/7bc9bf14e1289913436ac90221406477 to your computer and use it in GitHub Desktop.
Simple Dynamic CAN Airflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
from airflow import DAG | |
from airflow.decorators import dag, task | |
from airflow.utils.dates import days_ago | |
from airflow.operators.python import PythonOperator | |
from libs.datasets import combined_datasets | |
default_args = { | |
'owner': 'airflow', | |
} | |
# A really simple task for each region | |
def region_task(region_count): | |
print(region_count) | |
@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2)) | |
def simple_dynamic(): | |
""" | |
### Building a dynamic covid dag | |
This makes dynamic covid dag with pysier data | |
""" | |
@task(multiple_outputs=True) | |
def extract(): | |
""" | |
#### Reads the region data | |
""" | |
return {'NY': [6, 1], 'CA': [5, 26, 10]} | |
@task() | |
def transform(region, region_list): | |
""" | |
#### Counts the sub-regions | |
""" | |
print(f'region_{region}') | |
print(region_list) | |
dag_subdag = DAG(dag_id=f'transform_{region}', | |
default_args=default_args, | |
schedule_interval='@daily') | |
# Attempt to produce a sub-dag dynamically based on the results. | |
for i, region_count in enumerate(region_list): | |
PythonOperator(task_id=f'{region}-{i}', | |
python_callable=region_task, | |
op_kwargs={'region_count': region_count}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment