Created
November 30, 2021 01:05
-
-
Save fozziethebeat/d613416fe97cc3748543ebe0754122aa to your computer and use it in GitHub Desktop.
Full Dynamic CAN Airflow
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from collections import defaultdict | |
from airflow.decorators import dag, task | |
from airflow.utils.dates import days_ago | |
from pyseir.run import OneRegionPipeline | |
from libs.datasets import combined_datasets | |
default_args = { | |
'owner': 'airflow', | |
} | |
@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2)) | |
def produce_dynamic_dag(): | |
@task() | |
def transform(region: str, one_region): | |
""" | |
#### Counts the sub-regions | |
""" | |
OneRegionPipeline.run(one_region) | |
# Produce the DAG structure dynamically by reading all the data. | |
regions_dataset = combined_datasets.load_us_timeseries_dataset( | |
).get_subset(states=['NY', 'CA']) | |
for region, one_region in regions_dataset.iter_one_regions(): | |
transform(region, one_region) | |
dynamic_dag = produce_dynamic_dag() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment