Last active
February 24, 2017 07:00
-
-
Save fpdevil/63425bd4582b658b6500b73744af5839 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%%%----------------------------------------------------------------------------- | |
%%% @author Sampath Singamsetty <> | |
%%% @copyright (C) 2017, Sampath Singamsetty | |
%%% @doc Week1 exercises | |
%%% www.futurelearn.com/courses/functional-programming-erlang | |
%%% @end | |
%%% Created : 23 Feb 2017 by Sampath Singamsetty <> | |
%%%----------------------------------------------------------------------------- | |
-module(week1). | |
-export([fib/1, pieces/1]). | |
-export([fibonacci/1, perfect/1]). | |
%% fibonacci numbers | |
%% helper functions for fast Fibonacci | |
fibStep({X, Y}) -> | |
{Y, X + Y}. | |
fibPair(0) -> | |
{0, 1}; | |
fibPair(N) when N > 0 -> | |
fibStep(fibPair(N-1)). | |
%% get first value of a pair | |
getFirst({X, _}) -> | |
X. | |
%% actual Fibonacci number | |
fib(0) -> | |
0; | |
fib(N) when N > 0 -> | |
getFirst(fibPair(N)). | |
%% tail recursive Fibonacci | |
fibonacci(N) -> | |
tail_fib(N, 0, 0, 0). | |
tail_fib(Acc, Acc, X, Y) -> X + Y; | |
tail_fib(Acc, 0, _, _) -> tail_fib(Acc, 1, 0, 0); | |
tail_fib(Acc, 1, _, _) -> tail_fib(Acc, 2, 1, 0); | |
tail_fib(Acc, N, X, Y) -> tail_fib(Acc, N+1, Y + X, X). | |
%% N cuts problem | |
%% given N lines, return the number of parts plane is divided into. | |
%% lines pieces | |
%% f(0) 1 | |
%% f(1) 2 | |
%% f(2) 4 | |
%% .. .. | |
%% f(n-2) (n-2) + f(n-3) | |
%% f(n-1) (n-1) + f(n-2) | |
%% f(n) n + f(n-1) | |
%% --------------------------- | |
%% add on both left and right side, cancel common terms | |
%% This gives the below general formula | |
%% f(n) = SUM (n) + 1 | |
%% f(n) = (2 + n*n + n)/2 | |
%% | |
pieces(0) -> | |
1; | |
pieces(N) when N > 0 -> | |
(2 + N*N + N) div 2. | |
%% perfect numbers | |
perfect(N) -> | |
L = lists:filter(fun(X) -> N rem X =:= 0 end, lists:seq(1, N-1)), | |
lists:sum(L) =:= N. | |
% 27> week1:perfect(6). | |
% true | |
% 28> week1:perfect(8). | |
% false | |
% 29> week1:perfect(28). | |
% true | |
% 30> week1:perfect(24). | |
% false |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment