Last active
June 29, 2025 18:50
-
-
Save frakw/01559b7c19fcd4ecc27ddb9da56edcd1 to your computer and use it in GitHub Desktop.
Benchmarking GoodDrag on DragBench dataset
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# GoodDrag: https://github.com/zewei-Zhang/GoodDrag | |
# DragBench: https://github.com/Yujun-Shi/DragDiffusion/releases/tag/v0.1.1 | |
# Usage: python dragbench_goodrag.py [dataset_folder] | |
# Note: you should use extract_drag_bench.py first, link: https://gist.github.com/frakw/4a259ece6e8a506057ebbbddc2ad5a73 | |
# ************************************************************************* | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ************************************************************************* | |
import os | |
import sys | |
import cv2 | |
import numpy as np | |
import json | |
from pathlib import Path | |
from PIL import Image | |
from utils.ui_utils import run_gooddrag, train_lora_interface, show_cur_points, create_video | |
def benchmark_dataset_dragbench(dataset_folder): | |
dataset_path = Path(dataset_folder) | |
categories = os.listdir(dataset_path) | |
for category in categories: | |
category_path = os.path.join(dataset_path, category) | |
if not os.path.isdir(category_path): | |
continue | |
samples = os.listdir(category_path) | |
for sample in samples: | |
sample_path = Path(os.path.join(category_path, sample)) | |
print(f'Benchmarking {sample_path}...') | |
try: | |
bench_one_image_dragbench(sample_path) | |
except Exception as e: | |
print(f'An error occured while benchmarking {category_path}: {e}.') | |
def load_data_dragbench(folder): | |
"""Load the original image, mask, and points from the specified folder.""" | |
folder_path = Path(folder) | |
# Load original image | |
original_image_path = folder_path / 'original_image.png' | |
original_image = Image.open(original_image_path) | |
original_image = np.array(original_image) | |
# Load mask | |
mask_path = folder_path / 'mask.png' | |
mask = Image.open(mask_path) | |
mask = np.array(mask) | |
if len(mask.shape) == 3: | |
mask = mask[:, :, 0] | |
# Load points | |
points_path = folder_path / 'drag_instruction.json' | |
with open(points_path, 'r') as f: | |
points_data = json.load(f) | |
points = points_data['points'] | |
image_points_path = folder_path / 'user_drag.png' | |
image_with_points = Image.open(image_points_path) | |
image_with_points = np.array(image_with_points) | |
return original_image, mask, points, image_with_points | |
def bench_one_image_dragbench(folder): | |
""" | |
Test the saved data by running the drag model. | |
Args: | |
folder: The folder where the original image, mask, and points are saved. | |
""" | |
original_image, mask, points, image_with_points = load_data_dragbench(folder) | |
model_path = 'runwayml/stable-diffusion-v1-5' | |
lora_path = f'./dragbench_lora_data/{folder.parts[-2]}/{folder.parts[-1]}' | |
print(f'Training Lora.') | |
train_lora_interface(original_image=original_image, prompt='', model_path=model_path, | |
vae_path='stabilityai/sd-vae-ft-mse', | |
lora_path=lora_path, lora_step=70, lora_lr=0.0005, lora_batch_size=4, lora_rank=16, | |
use_gradio_progress=False) | |
print(f'Training Lora Done! Begin dragging.') | |
return_intermediate_images = True | |
result_dir = f'./dragbench_result/{Path(folder).parts[-2]}/{Path(folder).parts[-1]}' | |
os.makedirs(result_dir, exist_ok=True) | |
output_image, new_points = run_gooddrag( | |
source_image=original_image, | |
image_with_clicks=image_with_points, | |
mask=mask, | |
prompt='', | |
points=points, | |
inversion_strength=0.75, | |
lam=0.1, | |
latent_lr=0.02, | |
model_path=model_path, | |
vae_path='stabilityai/sd-vae-ft-mse', | |
lora_path=lora_path, | |
drag_end_step=7, | |
track_per_step=10, | |
save_intermedia=False, | |
compare_mode=False, | |
r1=4, | |
r2=12, | |
d=4, | |
max_drag_per_track=3, | |
drag_loss_threshold=0, | |
once_drag=False, | |
max_track_no_change=5, | |
return_intermediate_images=return_intermediate_images, | |
result_save_path=result_dir | |
) | |
print(f'Drag finished!') | |
output_image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR) | |
output_image_path = os.path.join(result_dir, 'dragged_image.png') | |
cv2.imwrite(output_image_path, output_image) | |
img_with_new_points = show_cur_points(np.ascontiguousarray(output_image), new_points, bgr=True) | |
new_points_image_path = os.path.join(result_dir, 'image_with_new_points.png') | |
cv2.imwrite(new_points_image_path, img_with_new_points) | |
image_with_points_path = os.path.join(result_dir, 'image_with_points.png') | |
image_with_points = Image.fromarray(image_with_points) | |
image_with_points.save(image_with_points_path) | |
points_path = os.path.join(result_dir, f'new_points.json') | |
with open(points_path, 'w') as f: | |
json.dump({'points': new_points}, f) | |
if return_intermediate_images: | |
create_video(result_dir, folder) | |
def main(dataset_folder): | |
if dataset_folder == '': | |
benchmark_dataset_dragbench('drag_bench_data') | |
else: | |
benchmark_dataset_dragbench(dataset_folder) | |
if __name__ == '__main__': | |
dataset = sys.argv[1] | |
main(dataset) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment