Last active
January 30, 2025 07:47
-
-
Save francois-rozet/fd6a820e052157f8ac6e2aa39e16c1aa to your computer and use it in GitHub Desktop.
Flow Matching in 100 LOC
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import math | |
import matplotlib.pyplot as plt | |
import torch | |
import torch.nn as nn | |
from sklearn.datasets import make_moons | |
from torch import Tensor | |
from tqdm import tqdm | |
from typing import * | |
from zuko.utils import odeint | |
def log_normal(x: Tensor) -> Tensor: | |
return -(x.square() + math.log(2 * math.pi)).sum(dim=-1) / 2 | |
class MLP(nn.Sequential): | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
hidden_features: List[int] = [64, 64], | |
): | |
layers = [] | |
for a, b in zip( | |
(in_features, *hidden_features), | |
(*hidden_features, out_features), | |
): | |
layers.extend([nn.Linear(a, b), nn.ELU()]) | |
super().__init__(*layers[:-1]) | |
class CNF(nn.Module): | |
def __init__(self, features: int, freqs: int = 3, **kwargs): | |
super().__init__() | |
self.net = MLP(2 * freqs + features, features, **kwargs) | |
self.register_buffer('freqs', torch.arange(1, freqs + 1) * torch.pi) | |
def forward(self, t: Tensor, x: Tensor) -> Tensor: | |
t = self.freqs * t[..., None] | |
t = torch.cat((t.cos(), t.sin()), dim=-1) | |
t = t.expand(*x.shape[:-1], -1) | |
return self.net(torch.cat((t, x), dim=-1)) | |
def encode(self, x: Tensor) -> Tensor: | |
return odeint(self, x, 0.0, 1.0, phi=self.parameters()) | |
def decode(self, z: Tensor) -> Tensor: | |
return odeint(self, z, 1.0, 0.0, phi=self.parameters()) | |
def log_prob(self, x: Tensor) -> Tensor: | |
I = torch.eye(x.shape[-1], dtype=x.dtype, device=x.device) | |
I = I.expand(*x.shape, x.shape[-1]).movedim(-1, 0) | |
def augmented(t: Tensor, x: Tensor, ladj: Tensor) -> Tensor: | |
with torch.enable_grad(): | |
x = x.requires_grad_() | |
dx = self(t, x) | |
jacobian = torch.autograd.grad(dx, x, I, create_graph=True, is_grads_batched=True)[0] | |
trace = torch.einsum('i...i', jacobian) | |
return dx, trace * 1e-2 | |
ladj = torch.zeros_like(x[..., 0]) | |
z, ladj = odeint(augmented, (x, ladj), 0.0, 1.0, phi=self.parameters()) | |
return log_normal(z) + ladj * 1e2 | |
class FlowMatchingLoss(nn.Module): | |
def __init__(self, v: nn.Module): | |
super().__init__() | |
self.v = v | |
def forward(self, x: Tensor) -> Tensor: | |
t = torch.rand_like(x[..., 0, None]) | |
z = torch.randn_like(x) | |
y = (1 - t) * x + (1e-4 + (1 - 1e-4) * t) * z | |
u = (1 - 1e-4) * z - x | |
return (self.v(t.squeeze(-1), y) - u).square().mean() | |
if __name__ == '__main__': | |
flow = CNF(2, hidden_features=[64] * 3) | |
# Training | |
loss = FlowMatchingLoss(flow) | |
optimizer = torch.optim.Adam(flow.parameters(), lr=1e-3) | |
data, _ = make_moons(16384, noise=0.05) | |
data = torch.from_numpy(data).float() | |
for epoch in tqdm(range(16384), ncols=88): | |
subset = torch.randint(0, len(data), (256,)) | |
x = data[subset] | |
loss(x).backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
# Sampling | |
with torch.no_grad(): | |
z = torch.randn(16384, 2) | |
x = flow.decode(z) | |
plt.figure(figsize=(4.8, 4.8), dpi=150) | |
plt.hist2d(*x.T, bins=64) | |
plt.savefig('moons_fm.pdf') | |
# Log-likelihood | |
with torch.no_grad(): | |
log_p = flow.log_prob(data[:4]) | |
print(log_p) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi @AlienKevin. If you want your
odeint
to work withlog_prob
, you will need to packx
andladj
as a single tensor representing the state of the ODE and unpack it inside the function to integrate.For example, if you want to integrate a function$f$ that takes $x_1$ and $x_2$ and returns $\dot{x}_1$ and $\dot{x}_2$ :