Created
December 26, 2018 03:30
-
-
Save frankbryce/4c38a8b633f5fcd9598710310c413924 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// compute probability of landing on tile after certain number of steps of brownian | |
package main | |
import ( | |
"flag" | |
"fmt" | |
"math/big" | |
"math/rand" | |
"os" | |
"time" | |
) | |
// Tile is the fundamental data object for this puzzle | |
// in the puzzle, it's a hex piece, but this is more general because that's just the way I thought to do it | |
type Tile struct { | |
index int | |
nbrs map[int]bool | |
} | |
var ( | |
numIters = flag.Int("num_iters", 19, "number of iterations of brownian motion to do") | |
numTiles = flag.Int("num_tiles", 74, "number of tiles to put in the grid") | |
pcxn = flag.Float64("pcxn", 0, "if non-zero, generates a random grid with pcxn probability of being connected to another neighbor") | |
verbose = flag.Bool("verbose", false, "show verbose log messages") | |
printAsRat = flag.Bool("print_as_rat", false, "prints the final probability as a floating point number") | |
printTop = flag.Int("print_top", 1, "number of tiles to print ordered from most probability, descending.") | |
) | |
var tile = make([]*Tile, 0) | |
var p = make([]*big.Rat, 0) | |
// Reset the state of the Tile Generator for hermetic Tests | |
func Reset() { | |
tile = make([]*Tile, 0) | |
} | |
// AddNeighbors to the associated Tile | |
func (t *Tile) AddNeighbors(nbrs ...*Tile) { | |
for _, n := range nbrs { | |
t.nbrs[n.index] = true | |
n.nbrs[t.index] = true | |
} | |
} | |
// AddNeighborsByIndex instead of their object | |
func (t *Tile) AddNeighborsByIndex(idx ...int) { | |
for _, i := range idx { | |
t.nbrs[i] = true | |
tile[i].nbrs[t.index] = true | |
} | |
} | |
// NumNeighbors returns the number of neighbors for the associated Tile | |
func (t *Tile) NumNeighbors() int { | |
return len(t.nbrs) | |
} | |
// GetNeighbors of the associated Tile | |
func (t *Tile) GetNeighbors() []*Tile { | |
ret := []*Tile{} | |
for idx := range t.nbrs { | |
ret = append(ret, tile[idx]) | |
} | |
return ret | |
} | |
// HasNeighbor returns true iff the the queried tile is a neighbor of the associated Tile | |
func (t *Tile) HasNeighbor(n *Tile) bool { | |
_, ok := t.nbrs[n.index] | |
return ok | |
} | |
func (t *Tile) String() string { | |
return fmt.Sprintf("{index: %d, neighbors: %v}", t.index, t.nbrs) | |
} | |
// NewTile creates a new Tile and returns it. index will increment every time it's called. | |
func NewTile() *Tile { | |
ret := &Tile{ | |
index: len(tile), | |
nbrs: make(map[int]bool), | |
} | |
tile = append(tile, ret) | |
return ret | |
} | |
// NewTiles creates a number of new tiles based on the parameter, n. | |
func NewTiles(n int) []*Tile { | |
ret := []*Tile{} | |
for i := 0; i < n; i++ { | |
ret = append(ret, NewTile()) | |
} | |
return ret | |
} | |
func main() { | |
flag.Parse() | |
NewTiles(*numTiles) | |
// set up neighbors | |
if *pcxn == 0 { | |
tile[1].AddNeighborsByIndex(3, 4) | |
tile[2].AddNeighborsByIndex(3, 5) | |
tile[3].AddNeighborsByIndex(1, 2, 4, 5, 7) | |
tile[4].AddNeighborsByIndex(1, 3, 6, 7, 9) | |
tile[5].AddNeighborsByIndex(2, 3, 7, 10) | |
tile[6].AddNeighborsByIndex(4, 9, 12) | |
tile[7].AddNeighborsByIndex(3, 4, 5, 9, 10, 13) | |
tile[8].AddNeighborsByIndex(11, 14) | |
tile[9].AddNeighborsByIndex(4, 6, 7, 12, 13, 17) | |
tile[10].AddNeighborsByIndex(5, 7, 13, 18) | |
tile[11].AddNeighborsByIndex(8, 14, 15, 19) | |
tile[12].AddNeighborsByIndex(6, 9, 16, 17, 22) | |
tile[13].AddNeighborsByIndex(7, 9, 10, 17, 18, 23) | |
tile[14].AddNeighborsByIndex(8, 11, 19) | |
tile[15].AddNeighborsByIndex(11, 19, 20, 25) | |
tile[16].AddNeighborsByIndex(12, 21, 22, 28) | |
tile[17].AddNeighborsByIndex(9, 12, 13, 22, 23, 29) | |
tile[18].AddNeighborsByIndex(10, 13, 23, 24, 30) | |
tile[19].AddNeighborsByIndex(11, 14, 15, 25, 31) | |
tile[20].AddNeighborsByIndex(15, 25, 26, 32) | |
tile[21].AddNeighborsByIndex(16, 27, 28, 34) | |
tile[22].AddNeighborsByIndex(12, 16, 17, 28, 29, 35) | |
tile[23].AddNeighborsByIndex(13, 17, 18, 29, 30, 36) | |
tile[24].AddNeighborsByIndex(18, 30) | |
tile[25].AddNeighborsByIndex(15, 19, 20, 31, 32, 38) | |
tile[26].AddNeighborsByIndex(20, 32, 33, 39) | |
tile[27].AddNeighborsByIndex(21, 33, 34, 40) | |
tile[28].AddNeighborsByIndex(16, 21, 22, 34, 35, 41) | |
tile[29].AddNeighborsByIndex(17, 22, 23, 35, 36, 42) | |
tile[30].AddNeighborsByIndex(18, 23, 24, 36) | |
tile[31].AddNeighborsByIndex(19, 25, 37, 38, 43) | |
tile[32].AddNeighborsByIndex(20, 25, 26, 38, 39, 44) | |
tile[33].AddNeighborsByIndex(26, 27, 39, 40, 45) | |
tile[34].AddNeighborsByIndex(21, 27, 28, 40, 41, 46) | |
tile[35].AddNeighborsByIndex(22, 28, 29, 41, 42, 47) | |
tile[36].AddNeighborsByIndex(23, 29, 30, 42) | |
tile[37].AddNeighborsByIndex(31, 43, 48) | |
tile[38].AddNeighborsByIndex(25, 31, 32, 43, 44, 49) | |
tile[39].AddNeighborsByIndex(26, 32, 33, 44, 45, 50) | |
tile[40].AddNeighborsByIndex(27, 33, 34, 45, 46, 51) | |
tile[41].AddNeighborsByIndex(28, 34, 35, 46, 47, 52) | |
tile[42].AddNeighborsByIndex(29, 35, 36, 47, 53) | |
tile[43].AddNeighborsByIndex(31, 37, 38, 48, 49) | |
tile[44].AddNeighborsByIndex(32, 38, 39, 49, 50, 55) | |
tile[45].AddNeighborsByIndex(33, 39, 40, 50, 51, 56) | |
tile[46].AddNeighborsByIndex(34, 40, 41, 51, 52, 57) | |
tile[47].AddNeighborsByIndex(35, 41, 42, 52, 53, 58) | |
tile[48].AddNeighborsByIndex(37, 43, 54) | |
tile[49].AddNeighborsByIndex(38, 43, 44, 55) | |
tile[50].AddNeighborsByIndex(39, 44, 45, 55, 56) | |
tile[51].AddNeighborsByIndex(40, 45, 46, 56, 57, 59) | |
tile[52].AddNeighborsByIndex(41, 46, 47, 57, 58, 60) | |
tile[53].AddNeighborsByIndex(42, 47, 58, 61) | |
tile[54].AddNeighborsByIndex(48) | |
tile[55].AddNeighborsByIndex(44, 49, 50) | |
tile[56].AddNeighborsByIndex(45, 50, 51, 59) | |
tile[57].AddNeighborsByIndex(46, 51, 52, 59, 60, 62) | |
tile[58].AddNeighborsByIndex(47, 52, 53, 60, 61, 63) | |
tile[59].AddNeighborsByIndex(51, 56, 57, 62) | |
tile[60].AddNeighborsByIndex(52, 57, 58, 62, 63, 64) | |
tile[61].AddNeighborsByIndex(53, 58, 63) | |
tile[62].AddNeighborsByIndex(57, 59, 60, 64, 65) | |
tile[63].AddNeighborsByIndex(58, 60, 61, 64, 66) | |
tile[64].AddNeighborsByIndex(60, 62, 63, 65, 66, 67) | |
tile[65].AddNeighborsByIndex(62, 64, 67, 68) | |
tile[66].AddNeighborsByIndex(63, 64, 67, 69) | |
tile[67].AddNeighborsByIndex(64, 65, 66, 68, 69, 70) | |
tile[68].AddNeighborsByIndex(65, 67, 70, 71) | |
tile[69].AddNeighborsByIndex(66, 67, 70, 72) | |
tile[70].AddNeighborsByIndex(67, 68, 69, 71, 72, 73) | |
tile[71].AddNeighborsByIndex(68, 70, 73) | |
tile[72].AddNeighborsByIndex(69, 70, 73) | |
tile[73].AddNeighborsByIndex(70, 71, 72) | |
} else { | |
r := rand.New(rand.NewSource(time.Now().UnixNano())) | |
for i := 0; i < len(tile); i++ { | |
for j := i + 1; j < len(tile); j++ { | |
if r.Float64() < *pcxn { | |
tile[i].AddNeighborsByIndex(j) | |
} | |
} | |
} | |
} | |
// set up probs | |
pLast := make([]*big.Rat, len(tile)) | |
for i := 0; i < len(pLast); i++ { | |
pLast[i] = big.NewRat(0, 1) | |
} | |
if *pcxn > 0 { | |
pLast[0] = big.NewRat(1, 1) | |
} else { | |
pLast[1] = big.NewRat(1, 1) | |
} | |
pNext := make([]*big.Rat, len(tile)) | |
for i := 0; i < len(pNext); i++ { | |
pNext[i] = big.NewRat(0, 1) | |
} | |
// loop through iterations and perform brownian motion, storing | |
// probabilities at each iteration | |
if *verbose { | |
fmt.Println("iteration 0") | |
fmt.Println(tile) | |
fmt.Println(pLast) | |
fmt.Println() | |
} | |
for t := 0; t < *numIters; t++ { | |
for tIdx, t := range tile { | |
pNext[tIdx] = big.NewRat(0, 1) | |
for _, n := range t.GetNeighbors() { | |
pOfN := big.NewRat(0, 1).Set(pLast[n.index]) | |
pNext[tIdx] = pNext[tIdx].Add( | |
pNext[tIdx], | |
pOfN.Mul(pOfN, big.NewRat(1, int64(n.NumNeighbors())))) | |
} | |
} | |
// swap pLast and pNext | |
for i := range pLast { | |
t := pLast[i] | |
pLast[i] = pNext[i] | |
pNext[i] = t | |
} | |
if *verbose { | |
fmt.Println("iteration ", t+1) | |
fmt.Println(tile) | |
fmt.Println(pLast) | |
fmt.Println() | |
} | |
} | |
// sanity check that all probs add up to 1 | |
s := big.NewRat(0, 1) | |
for idx := range pLast { | |
s.Add(s, pLast[idx]) | |
} | |
if s.Cmp(big.NewRat(1, 1)) != 0 { | |
fmt.Fprintf(os.Stderr, "All probabilities do not add up to 1. Their sum is %v.", s) | |
return | |
} | |
printed := make(map[int]bool) | |
for i := 0; i < *printTop; i++ { | |
// find most likely ending location | |
maxP := big.NewRat(0, 1) | |
maxI := -1 | |
for idx := range pLast { | |
if maxP.Cmp(pLast[idx]) < 0 { | |
if _, ok := printed[idx]; !ok { | |
maxP = pLast[idx] | |
maxI = idx | |
} | |
} | |
} | |
printed[maxI] = true | |
if *printAsRat { | |
fmt.Printf("Most Likely #%d: index %d with probability %v\n", i+1, maxI, maxP) | |
} else { | |
fmt.Printf("Most Likely #%d: index %d with probability %v\n", i+1, maxI, big.NewFloat(0).SetRat(maxP)) | |
} | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment